\(\dfrac{\left(x+y+1\right)^2}{xy+y+x}+\dfrac{xy+y+x}{\left(x+y+1\right)^2}\)
Bài 2. Cho A=\(\dfrac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}\) :\([\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\dfrac{1}{xy+2\sqrt{xy}}+\dfrac{2}{\left(\sqrt{x}+\sqrt{y}\right)^3}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)]\)
Bạn cần làm gì với biểu thức này?
F = \(\dfrac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left[\left(\dfrac{1}{x}+\dfrac{1}{y}\right).\dfrac{1}{x+y+2\sqrt{xy}}+\dfrac{2}{\left(\sqrt{x}+\sqrt{y}\right)^3}.\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\right]\)
\(F=\dfrac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left[\dfrac{x+y}{xy}\cdot\dfrac{1}{\left(\sqrt{x}+\sqrt{y}\right)^2}+\dfrac{2}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)^2}\right]\)
\(=\dfrac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left[\dfrac{x+y+2\sqrt{xy}}{xy\left(\sqrt{x}+\sqrt{y}\right)^2}\right]\)
\(=\dfrac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}\cdot xy=\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{xy}}\)
\(C=\dfrac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left(\dfrac{1}{x}+\dfrac{1}{y}\right).\dfrac{1}{x+y+2\sqrt{xy}}+\dfrac{2}{\left(\sqrt{x}+\sqrt{y}\right)^3}.\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\)
a) Rút gọn
b) Tính C với x=2-\(\sqrt{3}\); y=2+\(\sqrt{3}\)
Thực hiện phép tính:
a) \(\dfrac{1}{x-y}+\dfrac{3xy}{y^3-x^3}+\dfrac{x-y}{x^2+xy+y^2}\)
b) \(\dfrac{2x+y}{2x^2-xy}+\dfrac{16x}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)
c) \(\dfrac{xy}{ab}+\dfrac{\left(x-a\right)\left(y-a\right)}{a\left(a-b\right)}-\dfrac{\left(x-b\right)\left(y-b\right)}{b\left(a-b\right)}\)
d) \(\dfrac{x^3}{x-1}-\dfrac{x^2}{x+1}-\dfrac{1}{x-1}+\dfrac{1}{x+1}\)
a: \(=\dfrac{1}{x-y}-\dfrac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{x-y}{x^2+xy+y^2}\)
\(=\dfrac{x^2+xy+y^2-3xy+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{2x^2-4xy+2y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{2\left(x-y\right)}{x^2+xy+y^2}\)
d: \(=\dfrac{x^3-1}{x-1}-\dfrac{x^2-1}{x+1}\)
\(=x^2+x+1-x+1=x^2+2\)
cho x,y,z thỏa mãn \(x+y+z\le\dfrac{3}{2}\) . tìm GTNN của \(P=\dfrac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\dfrac{y\left(xz+1\right)^2}{y^2\left(xy+1\right)}+\dfrac{z\left(xy+1\right)^2}{x^2\left(yz+1\right)}\)
Áp dụng bất đẳng thức AM - GM:
\(P\ge3\sqrt[3]{\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}\).
Áp dụng bất đẳng thức AM - GM ta có:
\(xy+1=xy+\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}\ge5\sqrt[5]{\dfrac{xy}{4^4}}\).
Tương tự: \(yz+1\ge5\sqrt[5]{\dfrac{yz}{4^4}};zx+1\ge5\sqrt[5]{\dfrac{zx}{4^4}}\).
Do đó \(\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)\ge125\sqrt[5]{\dfrac{\left(xyz\right)^2}{4^{12}}}\)
\(\Rightarrow\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}\ge125\sqrt[5]{\dfrac{1}{4^{12}\left(xyz\right)^3}}\).
Mà \(xyz\le\dfrac{\left(x+y+z\right)^3}{27}=\dfrac{1}{8}\)
Nên \(\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}\ge125\sqrt[5]{\dfrac{8^3}{4^{12}}}=125\sqrt[5]{\dfrac{1}{2^{15}}}=\dfrac{125}{8}\)
\(\Rightarrow P\ge\dfrac{15}{2}\).
Vậy...
Áp dụng bất đẳng thức AM - GM:
P≥33√(xy+1)(yz+1)(zx+1)xyz.
Áp dụng bất đẳng thức AM - GM ta có:
xy+1=xy+14+14+14+14≥55√xy44.
Tương tự: yz+1≥55√yz44;zx+1≥55√zx44.
Do đó (xy+1)(yz+1)(zx+1)≥1255√(xyz)2412
⇒(xy+1)(yz+1)(zx+1)xyz≥1255√1412(xyz)3.
Mà xyz≤(x+y+z)327=18
Nên (xy+1)(yz+1)(zx+1)xyz≥1255√83412=1255√1215=1258
⇒P≥152.
Rút gọn biểu thức:
\(P=\left(\dfrac{1}{xy\sqrt{y}}-\dfrac{1}{xy\sqrt{x}}\right):\left(\dfrac{1}{x^2+xy+2x\sqrt{xy}}+\dfrac{1}{xy+y^2+2y\sqrt{xy}}+\dfrac{2}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)^2}\right)\)
cho x,y>0. tìm GTNN của \(A=\dfrac{\left(x+y+1\right)^2}{xy+x+y}+\dfrac{xy+x+y}{\left(x+y+1\right)^2}\)
\(\dfrac{\left(x+y+1\right)^2}{xy+x+y}\ge\dfrac{3\left(xy+x+y\right)}{xy+x+y}=3\)
\(\Rightarrow A=\dfrac{8\left(x+y+1\right)^2}{9\left(xy+x+y\right)}+\dfrac{\left(x+y+1\right)^2}{9\left(xy+x+y\right)}+\dfrac{xy+x+y}{\left(x+y+1\right)^2}\)
\(A\ge\dfrac{8}{9}.3+2\sqrt{\dfrac{\left(x+y+1\right)^2\left(xy+x+y\right)}{\left(xy+x+y\right)\left(x+y+1\right)^2}}=\dfrac{10}{3}\)
Dấu "=" xảy ra khi \(x=y=1\)
\(\left\{{}\begin{matrix}\dfrac{1}{2}\left(x+2\right)\left(y+3\right)=\dfrac{1}{2}xy+56\\\dfrac{1}{2}\left(x-2\right)\left(y-2\right)=\dfrac{1}{2}xy-32\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}\left(xy+3x+2y+6\right)=\dfrac{1}{2}xy+56\\\dfrac{1}{2}\left(xy-2x-2y+4\right)=\dfrac{1}{2}xy-32\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+2y+6=112\\-2x-2y+4=-64\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+2y=106\\-2x-2y=-68\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+2y=106\\x=38\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=38\\y=-4\end{matrix}\right.\)
Cho x+y+z=1.Chứng minh GTBT sau không phụ thuộc vào giá trị của biến
P=\(\dfrac{\left(x+y\right)^2}{xy+z}\).\(\dfrac{\left(y+z\right)^2}{yz+x}\).\(\dfrac{\left(x+z\right)^2}{zx+y}\)\(\dfrac{\left(x+y\right)^2}{xy+z}\)
`@ x+y+z=1`.
`<=>` \(\left\{{}\begin{matrix}x=1-y-z\\y=1-z-x\\z=1-x-y\end{matrix}\right.\)
`P=(x+y)^2/(xy+1-x-y).(y+z)^2/(yz-y-z+1).(x+z)^2/(xy-x-y+1)`.
`<=> ((1-z)^2(1-y)^2(1-x)^2)/((1-x)(1-y)(1-y)(1-z)(1-z)(1-x).`
`=1.`
Vậy `P` không phụ thuộc vào giá trị của biến.
1. Tính:
\(\sqrt{\dfrac{x-1+\sqrt{2x-3}}{x+2-\sqrt{2x+3}}}\)
2. Chứng minh:
a) \(\dfrac{\left(3\sqrt{xy}-6y.2x\sqrt{y}+4y\sqrt{x}\right)\left(3\sqrt{y}+2\sqrt{xy}\right)}{y\left(\sqrt{x}-2\sqrt{y}\right)\left(y-4x\right)}=1\)
b) \(\left(\sqrt{x}-\sqrt{y}-\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right)\left(\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\dfrac{y}{\sqrt{x}-\sqrt{y}}-\dfrac{2\sqrt{xy}}{xy}\right)=\sqrt{x}+\sqrt{y}\)
1.
\(\sqrt{\dfrac{x-1+\sqrt{2x-3}}{x+2-\sqrt{2x+3}}}\Leftrightarrow\)\(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\sqrt{\dfrac{\left(\sqrt{2x-3}+1\right)^2}{\left(\sqrt{2x+3}-1\right)^2}}\end{matrix}\right.\)\(\Leftrightarrow\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\dfrac{\sqrt{2x-3}+1}{\sqrt{2x+3}-1}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\dfrac{\left(\sqrt{2x-3}+1\right)\left(\sqrt{2x+3}+1\right)}{2\left(x+1\right)}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\dfrac{\sqrt{4x^2-9}+\sqrt{2x-3}+\sqrt{2x+3}+1}{2\left(x+1\right)}\end{matrix}\right.\)
hết tối giải rồi