Cho x,y >0 thỏa mãn x+y=1
Tìm GTNN của A =\(\left(x^2+\dfrac{1}{y^2}\right)\left(y^2+\dfrac{1}{x^2}\right)\)
Bài 1:Cho a, b là 2 số bất kì và x, y là 2 số dương.CM
\(\dfrac{a^2}{x}+\dfrac{b^2}{y}\ge\dfrac{\left(a+b\right)^2}{x+y}\)
Chứng minh rằng:
Nếu {a>0; b>0 ; x,y \(\in\) R} thì \(\dfrac{x^2}{a}+\dfrac{y^2}{b}\ge\dfrac{\left(x+y\right)^2}{a+b}\)
\(\dfrac{2\left(x+1\right)}{3}-2< \dfrac{x-2}{2}\)
CMR: \(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
Tìm GTNN của biểu thức sau:
\(N=\dfrac{3x}{2}+\dfrac{1}{x+1}\) với \(x>-1\)
Tìm GTLN của biểu thức:
\(Q=\left(6x+3\right)\left(5-2x\right)\) với\(\dfrac{-1}{2}\le x\le\dfrac{5}{2}\)
\(\dfrac{1}{4}\left(x-1\right)< \dfrac{x-4}{-6}\)
Tìm x để \(\dfrac{2x^2+3x}{2\left(x^2+x+1\right)}\)>0
Cho các số thực dương \(x,y,z\) thỏa mãn \(x+y+z=3\)
Tìm GTNN của biểu thức \(P=\dfrac{1}{x^2+x}+\dfrac{1}{y^2+y}+\dfrac{1}{z^2+z}\)