Cho hệ phương trình: x-2y=3-m
2x+y=3m+2
Tìm m để hệ có nghiệm duy nhất x^2+y^2 đật giá trị nhỏ nhất
Cho hệ phương trình : x + m x = m + 1 1 m x + y = 3 m - 1 2
Tìm m để hệ trên có nghiệm duy nhất sao cho đạt giá trị nhỏ nhất
A. m = 1
B. m = 0
C. m = 2
D. m = -1
cho hệ phương trình \(\hept{\begin{cases}4x-3y=m-10\\x+2y=3m+3\end{cases}}\) m là tham số
tìm m để hệ phương trình luôn có nghiệm duy nhất (x,y) thỏa mãn \(x^2+y^2\) đạt giá trị nhỏ nhất
Đk để hpt luôn có nghiệm duy nhất (x;y) \(\frac{4}{1}\ne\frac{3}{2}\) (luôn đúng)
\(HPT\Leftrightarrow\hept{\begin{cases}4x-3y=m-10\\4x+8y=12m+12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}11y=11m+22\\x+2y=3m+3\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{11m+22}{11}\\x=3m+3-2y\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{11m+22}{11}\\x=\frac{33m+33-22m-44}{11}\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{11m+22}{11}\\x=\frac{11m-11}{11}\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}x=m-1\\y=m+2\end{cases}}\)
Vậy vơi mọi m thì hpt có nghiệm duy nhất (x;y)=(m-1;m+2)
Ta có:\(x^2+y^2=\left(m-1\right)^2+\left(m+2\right)^2\)
\(=m^2-2m+1+m^2+4m+4\)
\(=2m^2+2m+5=2\left(m^2+m+\frac{5}{2}\right)\)
\(=2\left(m^2+m+\frac{1}{4}+\frac{9}{4}\right)=2\left(m+\frac{1}{2}\right)^2+\frac{9}{2}\ge\frac{9}{2}\)
Để x2+y2 nhỏ nhất <=> \(2\left(m+\frac{1}{2}\right)^2\) nhỏ nhất <=> m+1/2=0 <=> m=-1/2
.
Cho hệ phương trình với tham số m:\(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)
Tìm m để hệ phương trình có nghiệm duy nhất (x ;y ) mà S= y–x đạt giá trị nhỏ nhất.
Ta có: \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\m\left(2-my\right)-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\2m-m^2y-2y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\2m-\left(m^2y+2y\right)=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\m^2y+2y=2m-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\y\left(m^2+2\right)=2m-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2-\dfrac{m\cdot\left(2m-1\right)}{m^2+2}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m^2+4-2m^2+m}{m^2+2}=\dfrac{m+4}{m^2+2}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)
Tới đây bạn tự làm tiếp nhé
Cho hệ phương trình:
2x + y =m
( x - y +2)( x- 2y+1) =0
Tìm giá trị của m để hệ phương trình có nghiệm duy nhất
cho hệ phương trình x+my=m+1 mx+y=3m-1
tìm m để hệ phương trình có một nghiệm duy nhất (x,y)thõa mãn xy đại giá trị nhỏ nhất
Hệ pt : \(\begin{cases}x+my=m+1\\mx+y=3m-1\end{cases}\)
Xét pt đầu : \(x+my=m+1\Leftrightarrow x=m+1-my\) thay vào pt còn lại :
\(m\left(m+1-my\right)+y=3m-1\)
\(\Leftrightarrow y\left(1-m^2\right)=-m^2+2m-1\)
Nếu \(m=1\) thì pt có dạng 0.y = 0 => Vô số nghiệm.
Nếu m = -1 thì pt có dạng 0.x = -4 => vô nghiệm.
Xét với \(m\ne1\) và \(m\ne-1\) thì pt có nghiệm \(y=\frac{-\left(m-1\right)^2}{\left(1-m\right)\left(1+m\right)}=\frac{m-1}{m+1}\)
\(\Rightarrow x=m+1-m\left(\frac{m-1}{m+1}\right)=m+1-\frac{m^2-m}{m+1}=\frac{m^2+2m+1-m^2+m}{m+1}=\frac{3m+1}{m+1}\)
Xét \(xy=\frac{\left(m-1\right)\left(3m+1\right)}{\left(m+1\right)^2}=\frac{3m^2-2m-1}{\left(m+1\right)^2}\)
Đặt \(t=m+1\) thì \(m=t-1\) thay vào biểu thức trên được
\(\frac{3\left(t-1\right)^2-2\left(t-1\right)-1}{t^2}=\frac{3t^2-8t+4}{t^2}=\frac{4}{t^2}-\frac{8}{t}+3\)
Lại đặt \(a=\frac{1}{t}\) thì : \(4a^2-8a+3=4\left(a-1\right)^2-1\ge-1\)
Suy ra \(xy\ge-1\) . Dấu đẳng thức xảy ra khi \(a=1\Leftrightarrow t=1\Leftrightarrow m=0\)
Vậy với m = 0 thì xy đạt giá trị nhỏ nhất bằng -1
cho hệ pt x-2y=3-m (1) 2x+y=3(m+2) (2) a. giải hệ vs m=2 b. tìm tất các giá trị của m để hệ có nghiệm duy nhất c. tìm GTNN của A=x^2+y^2 trong đó x, y là nghiệm duy nhất của hệ d,. tìm m để hệ có nghiệm sao cho 5x-y=3
Bài 1:Cho hệ
mx+y=3 (1)
9x+my=2m+3 (2)
Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn: 3x+2y=9
Bài 2:Cho hệ
mx+y= m^2
x+my=1 (m là tham số)
Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x+y>0
Cho hệ phương trình
x + my = 2
mx - 2y = 1
a. Tìm m để nghiệm của hệ có dạng (2;y)
b. Tìm m để hệ có nghiệm duy nhất (x;y) mà S = 2x–y đạt giá trị lớn nhất
a: Thay x=2 và y=y vào hệ, ta được:
my+2=2 và 2m-2y=1
=>my=0 và 2m-2y=1
=>\(m\in\varnothing\)
b: \(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\m\left(2-my\right)-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\2m-m^2y-2y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\y\left(-m^2-2\right)=1-2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m-1}{m^2+2}\\x=2-\dfrac{2m^2-m}{m^2+2}=\dfrac{2m^2+4-2m^2+m}{m^2+2}=\dfrac{m+4}{m^2+2}\end{matrix}\right.\)
Để \(S=2x-y=\dfrac{2m+8-2m+1}{m^2+2}=\dfrac{7}{m^2+2}_{MAX}\) thì m^2+2 min
=>m=0
Cho hệ phương trình \(\left\{{}\begin{matrix}3x-y=2m-1\\x+2y=3m+2\end{matrix}\right.\) (với m là tham số)
Tìm m để hệ đã cho có nghiệm (x;y) thỏa mãn: x2 + y2 + 3 đạt giá trị nhỏ nhất.
\(\left\{{}\begin{matrix}3x-y=2m-1\\x+2y=3m+2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x-2y+x+2y=4m-2+3m+2\\x+2y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x=7m\\x+2y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\m+2y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\2y=2m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=m+1\end{matrix}\right.\)
\(x^2+y^2+3\\ =m^2+\left(m+1\right)^2+3\\ =m^2+m^2+2m+1+3\\ =2m^2+2m+4\\ =2\left(m^2+m+2\right)\)
\(=2\left(m^2+m+\dfrac{1}{4}+\dfrac{7}{4}\right)\)
\(=2\left[\left(m+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\right]\)
\(=2\left(m+\dfrac{1}{2}\right)^2+\dfrac{7}{2}\ge\dfrac{7}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow m=-\dfrac{1}{2}\)
Vậy ...