Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
giang hoang
Xem chi tiết
Trần Lê Hải Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 10 2021 lúc 21:52

b: Xét ΔBAC vuông tại B có BH là đường cao

nên \(HA\cdot HC=BH^2\left(1\right)\)

Xét ΔBHC vuông tại H có HE là đường cao

nên \(BE\cdot BC=BH^2\left(2\right)\)

Từ (1) và (2) suy ra \(HA\cdot HC=BE\cdot BC\)

Trần Thiên Kim
Xem chi tiết
Trần Thiên Kim
25 tháng 7 2017 lúc 20:51

Phương An

Luân Phạm Đức
Xem chi tiết
nguyenvankhoi196a
6 tháng 11 2017 lúc 16:53

Diễn giải:

- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.

Ví dụ 1:

Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75

Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9

- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.

Cao Chi Hieu
Xem chi tiết
Thu Huệ
Xem chi tiết
Nguyễn Phương Uyên
16 tháng 9 2020 lúc 20:58

A C B D O M K H

a;b dễ chắc tự làm đc

c, lấy K sao cho M là trđ của OK

mà có M là trđ của AC (gt) 

=> COAK là hình bình hành (dh)

=> CK // OA hay CK // OH và AK // CO hay AK // OD

xét tg KCB có CK // OH => \(\frac{BH}{HC}=\frac{BO}{OK}\)  (talet)

xét tg KAB có AK / OD => \(\frac{BO}{OK}=\frac{BD}{DA}\) (talet)

=> \(\frac{BH}{HC}=\frac{BD}{AD}\) mà có \(\frac{BD}{AD}=\frac{BC}{AC}\) do CD là pg của tg ABC (gt)

=> \(\frac{BC}{AC}=\frac{HB}{HC}\Rightarrow BC\cdot HC=HB\cdot AC\)

mà có \(BC\cdot HC=AC^2\) do tg ABC v tại A và AH _|_ BC (gt)

=> AC^2 = HB*AC

=> AC = HB (chia 2 vế cho ac vì ac > 0)

Khách vãng lai đã xóa
Kiệt Nguyễn
17 tháng 9 2020 lúc 21:18

Theo định lý Ce-va ta có: \(\frac{BH}{HC}.\frac{MC}{MA}.\frac{DA}{DB}=1\)

Mà MA = MC (do BM là đường trung tuyến của \(\Delta\)ABC) nên \(\frac{BH}{HC}.\frac{DA}{DB}=1\)(1)

CD là phân giác nên theo tính chất đường phân giác trong tam giác, ta có: \(\frac{DA}{DB}=\frac{AC}{BC}\)(2)

Từ (1) và (2) suy ra \(\frac{BH}{HC}.\frac{AC}{BC}=1\Rightarrow BH.AC=HC.BC\)(3)

Dễ thấy \(\Delta ABC~\Delta HAC\left(g.g\right)\Rightarrow\frac{HC}{AC}=\frac{AC}{BC}\Rightarrow AC^2=BH.HC\)(4)

Từ (3) và (4) suy ra \(AC^2=BH.AC\Rightarrow BH=AC\left(đpcm\right)\)

Khách vãng lai đã xóa
nguyenchihieu
17 tháng 9 2020 lúc 21:24

khó quá thôi

Khách vãng lai đã xóa
Tố Quyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 12 2023 lúc 20:40

a: ΔABC vuông tại A
mà AM là đường trung tuyến

nên MA=MB=MC

Ta có: MA=MB

=>ΔMAB cân tại M

=>\(\widehat{MAB}=\widehat{MBA}\)

Ta có: \(\widehat{DAB}+\widehat{MAB}=\widehat{DAM}=90^0\)

\(\widehat{HAB}+\widehat{HBA}=90^0\)(ΔHAB vuông tại H)

mà \(\widehat{MAB}=\widehat{HBA}\)(cmt)

nên \(\widehat{DAB}=\widehat{HAB}\)

=>AB là phân giác của góc DAH

 

Quynh Existn
Xem chi tiết
Akai Haruma
16 tháng 7 2021 lúc 17:34

Lời giải:

Theo tính chất tia phân giác:

$\frac{AB}{AC}=\frac{BD}{DC}=\frac{15}{20}=\frac{3}{4}$

Áp dụng hệ thức lượng trong tam giác vuông:

$AB^2=BH.BC$

$AC^2=CH.BC$

$\Rightarrow \frac{BH}{CH}=(\frac{AB}{AC})^2=\frac{9}{16}$

Mà $BH+CH=BC=BD+CD=15+20=35$ (cm)

Do đó:

$BH=35:(9+16).9=12,6$ (cm)

$CH=35:(9+16).16=22,4$ (cm)

Akai Haruma
16 tháng 7 2021 lúc 17:35

Hình vẽ:

🍉 Ngọc Khánh 🍉
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2021 lúc 21:12

b: Xét ΔABM vuông tại A có AK là đường cao

nên \(BK\cdot BM=AB^2\left(1\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BK\cdot BM=BH\cdot BC\)

hay \(\dfrac{BK}{BH}=\dfrac{BC}{BM}\)

Xét ΔBKC và ΔBHM có

\(\dfrac{BK}{BH}=\dfrac{BC}{BM}\)

\(\widehat{MBH}\) chung

Do đó: ΔBKC\(\sim\)ΔBHM