Trên đường tròn (O), vẽ hai cung AB và CD, thỏa mãn cung AB = 2 cung CD. Chứng minh AB < 2CD
Cho đường tròn tâm O đường kính AB. Vẽ dây cung CD vuông góc với AB tại I ( I nằm giữa A và O ). Lấy điểm E trên cung nhỏ BC (E khác B và C) AE cắt CD tại F . Chứng minh: bốn điểm B E F I thuộc một đường tròn.
Xét (O) có
\(\widehat{AEB}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{AEB}=90^0\)
Xét tứ giác BEFI có
\(\widehat{BEF}+\widehat{FIB}=180^0\)
nên BEFI là tứ giác nội tiếp
hay B,E,F,I cùng thuộc 1 đường tròn
cho (o) đường kính AB vẽ dây cung CD vuông góc với AB tại I(I giữa A và O) lấy M trên cung nhỏ BC Am cắt CD tại N chứng minh tân đường tròn ngoại tiếp tam giác CMN thuộc đường thẳn BC
Cho đường tròn (O) và hai đường kính AB,CD vuông góc với nhau.Lấy một điểm M trên cung AC rồi vẽ tiếp tuyến với đường tròn (O) tại M.Tiếp tuyến này cắt đường thẳng CD tại S. Chứng minh rằng ∠ MSD = 2.MBA
Cho đường tròn tâm O đường kính AB. Vẽ dây cung CD vuông góc với AB tại I ( I nằm giữa A và O ). Lấy điểm E trên cung nhỏ BC (E khác B và C) AE cắt CD tại F . Chứng minh: bốn điểm B E F I thuộc một đường tròn.
a) \(\Delta ABE\)nội tiếp đường tròn đường kính \(AB\)
\(\Rightarrow\)\(\Delta ABE\perp E\)
\(\Rightarrow\)\(AEB\lambda=90\)độ
Tứ giác\(BEFI\)nội tiếp đường tròn đường kính \(FB\)
Cho đường tròn (O), hai đường kính AB và CD vuông góc với nhau. Trên cung nhỏ BC lấy điểm M sao cho số đo cung MB bằng hai lần số đo cung MC. Gọi N là giao điểm của AM và CD a) chứng minh ∆OMN cân b) chứng minh AM.AN = AO.AB
b: Xét ΔAON vuông tại O và ΔAMB vuông tại M co
góc OAN chung
=>ΔAON đồng dạngvới ΔAMB
=>AO/AM=AN/AB
=>AO*AB=AM*AN
Cho đường tròn (O) và dây AB chia đường tròn thành 2 cung thỏa mãn cung AMB=1/3.ANB. Tính số đo của 2 cung AMB và ANB, chứng minh khoảng cách từ tâm O đến dây AB = AB/2.
Cho đường tròn O và hai đường kính AB CD vuông góc với nhau lấy một điểm M trên cung nhỏ BC g vẽ tiếp tuyến với đường tròn O tại M tiếp tuyến này cắt CD tại S lấy điểm F thuộc cung nhỏ BC cắt AB ở E Chứng minh:
a,BD mũ 2 = DE.DF
b, góc MSD = góc 2MBA
Cho đường tròn O và hai đường kính AB CD vuông góc với nhau lấy một điểm M trên cung nhỏ BC g vẽ tiếp tuyến với đường tròn O tại M tiếp tuyến này cắt CD tại S lấy điểm F thuộc cung nhỏ BC cắt AB ở E Chứng minh:
a, BD2 = DE.DF
b, góc MSD = góc MBA
Cho đường tròn (O) và điểm P nằm ngoài đường tròn (O). Vẽ các tuyến BAP và DCP (không đi qua O). Gọi H,K lần lượt là trung điểm của AB,CD.
a) Chứng minh: O,P,H,K cùng thuộc đường tròn tâm I. Xác định vị trí điểm I.
b) Gọi M,N là giao điểm của 2 đường tròn tâm I và tâm O. Chứng minh: cung PM=cung PN
c) Giả sử AB>CD .Chứng minh cung OH nhỏ hơn cung OK, HP>KP