Cho 2 đường tròn (O) và (O') bằng nhau và cắt nhau tại A và B
a) Tứ giác AOO' là hình gì?
b) Cho AB = R = bán kính. tính số đo \(\stackrel\frown{AB}\) lớn và \(\stackrel\frown{AB}\) nhỏ
Cho nửa đường tròn (O) đường kính Ae. Gọi B, C, D là 3 điểm trên nửa đường tròn sao cho \(\stackrel\frown{AC}=2\stackrel\frown{AB},\stackrel\frown{AD}=3\stackrel\frown{AB}\)
a, Chứng minh M là điểm chính giữa của \(\stackrel\frown{AD}và\stackrel\frown{BC}\) ( OM ⊥ AD)
b, Tứ giác ABCD là hình gì? Vì sao?
Cho đương tròn (O; R) tiếp tuyến Ax. Trên tia Ax lấy điểm M sao cho AM = \(\sqrt{3}R\) , OM cắt đương tròn ở N
a, Tính số đo góc ở tâm tạo bởi 2 bán kính OA và ON
b, Tính số đo cung nhỏ \(\stackrel\frown{AN}\) và cung lớn \(\stackrel\frown{AN}\)
a) Xét ΔOAM vuông tại A có
\(\tan\widehat{AOM}=\dfrac{AM}{AO}=\sqrt{3}\cdot\dfrac{OA}{OA}=\sqrt{3}\)
hay \(\widehat{AOM}=60^0\)
\(\Leftrightarrow\widehat{AON}=60^0\)
Vậy: Số đo góc ở tâm tạo bởi 2 bán kính OA và ON là 600
b) Xét (O) có
\(\stackrel\frown{AN}\) là cung chắn góc ở tâm \(\widehat{AON}\)(gt)
nên \(sđ\stackrel\frown{AN}=60^0\)
Số đo cung lớn AN là:
\(360^0-60^0=300^0\)
cho nửa đường tròn (O) đường kính AB . Vẽ bán kính \(OC\perp AB\) . Trên các cung CA và CB lần lượt lấy các điểm M và N sao cho \(sđ\stackrel\frown{CM}=sđ\stackrel\frown{BN}\) . CMR
a) \(\stackrel\frown{AM}=\stackrel\frown{CN}\) và AM=CN
b) MN=CA=CB
GIẢI HỘ MK CÂU B) NHA
b) Do \(\stackrel\frown{AM}=\stackrel\frown{CN}\) (theo câu a) => \(\widehat{AOM}=\widehat{CON}\)
Mà \(\widehat{AOM}+\widehat{MOC}=\widehat{AOC}=90^o\) => \(\widehat{NOC}+\widehat{MOC}=\widehat{MON}=90^o\)
Xét ΔOMN và ΔOAC có: \(\widehat{MON}=\widehat{AOC}=90^o\)
OA = OM (=bán kính nửa đường tròn)
OC = ON (=bán kính nửa đường tròn)
=> ΔOMN = ΔOAC (c.g.c) => MN = AC (2 cạnh tương ứng)
CMTT => ΔOMN = ΔOBC => MN = BC (2 cạnh tương ứng)
=> MN = AC = BC
cho nửa đường tròn ( O) đường kính AB . Vẽ bán kính OC\(\perp\)AB . Trên cung CA và CB lần lượt lấy các điểm M và N sao cho sđ\(\stackrel\frown{CM}=sđ\stackrel\frown{BN}\). CMR
a) \(\stackrel\frown{AM}=\stackrel\frown{CN}\) và AM=CN
b) MN=CA=CB
a) Xét (O) có
M là một điểm nằm trên cung \(\stackrel\frown{CA}\)(gt)
nên \(sđ\stackrel\frown{CM}+sđ\stackrel\frown{MA}=sđ\stackrel\frown{CA}\)(1)
Xét (O) có
N là một điểm nằm trên cung \(\stackrel\frown{CB}\)(gt)
nên \(sđ\stackrel\frown{CN}+sđ\stackrel\frown{NB}=sđ\stackrel\frown{CB}\)(2)
Xét (O) có AB là đường kính(gt)
nên O là trung điểm của AB
Xét ΔCAB có
CO là đường cao ứng với cạnh AB(gt)
CO là đường trung tuyến ứng với cạnh AB(O là trung điểm của AB)
Do đó: ΔCAB cân tại C(Định lí tam giác cân)
⇒CA=CB
⇒\(sđ\stackrel\frown{CA}=sđ\stackrel\frown{CB}\)(3)
Từ (1), (2) và (3) suy ra \(sđ\stackrel\frown{CM}+sđ\stackrel\frown{AM}=sđ\stackrel\frown{CN}+sđ\stackrel\frown{NB}\)
mà \(sđ\stackrel\frown{CM}=sđ\stackrel\frown{BN}\)(gt)
nên \(sđ\stackrel\frown{AM}=sđ\stackrel\frown{CN}\)
hay \(\stackrel\frown{AM}=\stackrel\frown{CN}\)(đpcm)
Xét (O) có
AM là dây cung(A,M∈(O))
CN là dây cung(C,N∈(O))
\(\stackrel\frown{AM}=\stackrel\frown{CN}\)(cmt)
Do đó: AM=CN(Liên hệ giữa cung và dây)
Cần gấp !!!
Trên nửa đường tròn tâm O đường kính AD lấy điểm C và B sao cho \(\stackrel\frown{AC}>\stackrel\frown{CD}\),\(\stackrel\frown{AB}=\stackrel\frown{BC}\) Gọi E là giao điểm của AB và DC,H là giao điểm của AC và BD, K là giao điểm của EH và AD,Tia HC cắt (D;DE) tại F,KC cắt EF tại M( Đã có tam giác ADE cân tại D, KHCD là tứ giác nội tiếp,KC//AE).CM: MB là tiếp tuyến của đường tròn đường kính AD
Cần gấp !!!!!!
c, Do KC // AE
\(\Rightarrow\)CM // AE
Ta có DF = DA = DE ( \(\Delta DAE.cân.ở.D\) )
\(\Rightarrow\Delta ADF\) cân ở D mà DC là đường cao ứng với đáy
\(\Rightarrow\) AC = CF
Mà CM // AE
\(\Rightarrow\) CM là đường TB
\(\Rightarrow ME=MF\)
\(\Delta AED\) cân ở D. BD là đường cao
\(\Rightarrow\) BD là trung tuyến
\(\Rightarrow\) BA = BE
mà ME = MF
\(\Rightarrow\) BM là đường TB ứng vớ cạnh đáy AF
\(\Rightarrow\) BM // AF ; BM // AC
Vì \(\stackrel\frown{BA}=\stackrel\frown{BC}\Rightarrow BO\perp AC\)
Mà BM // AC
\(\Rightarrow BO\perp BM\)
\(\Rightarrow\) BM là tiếp tuyến đường tròn tâm O đường kính AD
Trên nửa đường tròn tâm O đường kính AD lấy điểm C và B sao cho \(\stackrel\frown{AC}>\stackrel\frown{CD}\) \(\stackrel\frown{AB}=\stackrel\frown{BC}\) Gọi E là giao điểm của AB và DC,H là giao điểm của AC và BD, K là giao điểm của EH và AD( Đã có tam giác ADE cân tại D, KHCD là tứ giác nội tiếp)
1)KC//AE
2)Tia HC cắt (D;DE) tại F,KC cắt EF tại M.CM: MB là tiếp tuyến của đường tròn đường kính AD
Trên nửa đường tròn tâm O đường kính AD lấy điểm C và B sao cho \(\stackrel\frown{AC}>\stackrel\frown{CD}\),\(\stackrel\frown{AB}=\stackrel\frown{BC}\) Gọi E là giao điểm của AB và DC,H là giao điểm của AC và BD, K là giao điểm của EH và AD,Tia HC cắt (D;DE) tại F,KC cắt EF tại M( Đã có tam giác ADE cân tại D, KHCD là tứ giác nội tiếp,KC//AE).CM: MB là tiếp tuyến của đường tròn đường kính AD
Cần gấp !!!!!!
Cho đường tròn (O;R), vẽ dây AB sao cho sđ \(\stackrel\frown{AB}\) nhỏ = \(\dfrac{1}{2}\) sđ\(\stackrel\frown{AB}\) lớn. Tính diện tích \(\Delta\)AOB
Tham khảo ha:
https://hoidap247.com/cau-hoi/522596
\(Ta.có:\\ Sđ\stackrel\frown{AB}_{lớn}+Sđ\stackrel\frown{AB}_{nhỏ}=360^0\\ mà.Sđ\stackrel\frown{AB}_{lớn}=2Sđ\stackrel\frown{AB}_{nhỏ}\\ Sđ\stackrel\frown{AB}_{nhỏ}=Sđ\widehat{AOB}\\ nên.Sđ\stackrel\frown{AB}_{nhỏ}=120^0\\ Kẻ.OH\perp AB\Rightarrow\widehat{AOH}=60^0\\ \Rightarrow\Delta AOH.là.nửa.\Deltađều\\ \Rightarrow OH=\dfrac{OA}{2}=\dfrac{R}{2}.và.AH=\dfrac{R\sqrt{3}}{2}\)
\(Vì.OH\perp AB.nên.AB=2AH=2.\dfrac{R\sqrt{3}}{2}=R\sqrt{3}\\ Vậy.S_{OAB}=\dfrac{1}{2}AB.OH=\dfrac{R^2\sqrt{3}}{4}\)
Cho ΔAOB có \(\widehat{AOB}=110^o\) . Vẽ đường tròn (O, OA). Gọi C là 1 điểm trên đường tròn (O) biết sđ \(\stackrel\frown{AC}=40^0\) . Tính số đo cung nhỏ \(\stackrel\frown{BC}\) và cung lớn \(\stackrel\frown{BC}\)