Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
títtt
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 1 lúc 21:24

ĐKXĐ:

a.

\(2x-4>0\Rightarrow x>2\Rightarrow D=\left(2;+\infty\right)\)

b.

\(2x+8>0\Rightarrow x>-4\Rightarrow D=\left(-4;+\infty\right)\)

c.

\(4-x>0\Rightarrow x< 4\Rightarrow D=\left(-\infty;4\right)\)

d.

\(\dfrac{1}{x+4}>0\Rightarrow x>-4\Rightarrow D=\left(-4;+\infty\right)\)

e. 

\(\left(x-3\right)\left(x+9\right)>0\Rightarrow\left[{}\begin{matrix}x>3\\x< -9\end{matrix}\right.\) \(\Rightarrow D=\left(-\infty;-9\right)\cup\left(3;+\infty\right)\)

a: ĐKXĐ: 2x-4>0

=>2x>4

=>x>2

b: ĐKXĐ: 2x+8>0

=>2x>-8

=>x>-4

c: ĐKXĐ: 4-x>0

=>-x>-4

=>x<4

d: ĐKXĐ: \(\dfrac{1}{x+4}>0\)

=>x+4>0

=>x>-4

e: ĐKXĐ: \(\left(x-3\right)\left(x+9\right)>0\)

=>\(\left[{}\begin{matrix}x-3>0\\x+9< 0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>3\\x< -9\end{matrix}\right.\)

Nguyen Tu Le
Xem chi tiết
Akai Haruma
19 tháng 8 2017 lúc 22:45

Lời giải:

Để ý rằng \(\log _3(3^{x+1}-3)=\log_3[3(3^x-1)]=1+\log_3(3^x-1)\)

Đặt \(\log_3(3^x-1)=t\). Khi đó PT tương đương:

\(t(t+1)=6\Leftrightarrow (t-2)(t+3)=0\Rightarrow \)\(\left[{}\begin{matrix}t=2\\t=-3\end{matrix}\right.\)

Nếu \(t=2\rightarrow 3^x-1=9\Leftrightarrow 3^x=10\rightarrow x=\log_3(10)\)

Nếu \(t=-3\Rightarrow 3^x-1=\frac{1}{27}\Rightarrow 3^x=\frac{28}{27}\Rightarrow x=\log_3\left (\frac{28}{27}\right)\)

títtt
Xem chi tiết

a: \(log\left(x-2\right)< 3\)

=>\(\left\{{}\begin{matrix}x-2>0\\log\left(x-2\right)< log9\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-2>0\\x-2< 9\end{matrix}\right.\Leftrightarrow2< x< 11\)

b: \(log_2\left(2x-1\right)>3\)

=>\(\left\{{}\begin{matrix}2x-1>0\\log_2\left(2x-1\right)>log_29\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-1>0\\2x-1>9\end{matrix}\right.\Leftrightarrow2x-1>9\)

=>2x>10

=>x>5

c: \(log_3\left(-x-1\right)< =2\)

=>\(\left\{{}\begin{matrix}-x-1>0\\log_3\left(-x-1\right)< =log_39\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-x-1>0\\-x-1< =9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x>1\\-x< =10\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< -1\\x>=-10\end{matrix}\right.\Leftrightarrow-10< =x< -1\)

d: \(log_2\left(2x-3\right)>=2\)

=>\(\left\{{}\begin{matrix}2x-3>0\\log_2\left(2x-3\right)>=log_24\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-3>0\\2x-3>=4\end{matrix}\right.\)

=>2x-3>=4

=>2x>=7

=>\(x>=\dfrac{7}{2}\)

e: \(log_3\left(2x-7\right)>2\)

=>\(\left\{{}\begin{matrix}2x-7>0\\log_3\left(2x-7\right)>log_39\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>\dfrac{7}{2}\\2x-7>9\end{matrix}\right.\)

=>2x-7>9

=>2x>16

=>x>8

Nguyễn Việt Lâm
20 tháng 1 lúc 21:16

a.

\(log\left(x-2\right)< 3\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2>0\\x-2< 10^3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>2\\x< 1002\end{matrix}\right.\) \(\Rightarrow2< x< 1002\)

b.

\(log_2\left(2x-1\right)>3\Leftrightarrow\left\{{}\begin{matrix}2x-1>0\\2x-1>2^3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>\dfrac{1}{2}\\x>\dfrac{9}{2}\end{matrix}\right.\) \(\Rightarrow x>\dfrac{9}{2}\)

c.

\(log_3\left(-x-1\right)\le2\Rightarrow\left\{{}\begin{matrix}-x-1>0\\-x-1\le3^2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x< -1\\x\ge-10\end{matrix}\right.\) \(\Rightarrow-10\le x< -1\)

d.

\(log_2\left(2x-3\right)\ge2\Leftrightarrow\left\{{}\begin{matrix}2x-3>0\\2x-3\ge2^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\x>\dfrac{7}{2}\end{matrix}\right.\) \(\Rightarrow x>\dfrac{7}{2}\)

e,

\(log_3\left(2x-7\right)>2\Leftrightarrow\left\{{}\begin{matrix}2x-7>0\\2x-7>3^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{7}{2}\\x>8\end{matrix}\right.\) \(\Rightarrow x>8\)

Akai Haruma
20 tháng 1 lúc 21:16

Lời giải:
a. ĐK: $x>2$
$\log(x-2)<3$

$\Leftrightarrow x-2< 10^3$

$\Leftrightarrow x< 1002$

Vậy $2< x< 1002$
b.  ĐK: $x> \frac{1}{2}$

$\log_2(2x-1)>3$

$\Leftrightarrow 2x-1> 2^3$

$\Leftrightarrow 2x> 9$

$\Leftrightarrow x> \frac{9}{2}$

Vậy $x> \frac{9}{2}$

c. ĐK: $x< -1$

$\log_3(-x-1)\leq 2$

$\Leftrightarrow -x-1\leq 3^2=9$

$\Leftrightarrow x+1\geq -9$

$\Leftrightarrow x\geq -10$

Vậy $-10\leq x< -1$

d. ĐK: $x> \frac{3}{2}$

$\log_2(2x-3)\geq 2$

$\Leftrightarrow 2x-3\geq 2^2=4$

$\Leftrightarrow x\geq \frac{7}{2}$

Vậy $x\geq \frac{7}{2}$

e. ĐK: $x> \frac{7}{2}$

$\log_3(2x-7)>2$
$\Leftrightarrow 2x-7> 3^2=9$
$\Leftrightarrow x> 8$

Vậy $x>8$

títtt
Xem chi tiết

a: \(log\left(x-5\right)< 2\)

=>\(\left\{{}\begin{matrix}x-5>0\\log\left(x-5\right)< log4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-5>0\\x-5< 4\end{matrix}\right.\Leftrightarrow5< x< 9\)

b: \(log_2\left(2x-3\right)>4\)

=>\(log_2\left(2x-3\right)>log_216\)

=>\(\left\{{}\begin{matrix}2x-3>0\\2x-3>16\end{matrix}\right.\)

=>2x-3>16

=>2x>19

=>\(x>\dfrac{19}{2}\)

c: \(log_3\left(2x+5\right)< =3\)

=>\(log_3\left(2x+5\right)< =log_327\)

=>\(\left\{{}\begin{matrix}2x+5>0\\2x+5< =27\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>-\dfrac{5}{2}\\x< =11\end{matrix}\right.\)

=>\(-\dfrac{5}{2}< x< =11\)

d: \(log_4\left(4x-5\right)>=2\)

=>\(log_4\left(4x-5\right)>=log_416\)

=>4x-5>=16 và 4x-5>0

=>4x>=21 và 4x>5

=>4x>=21

=>\(x>=\dfrac{21}{4}\)

e: \(log_3\left(1-3x\right)>3\)

=>\(log_3\left(1-3x\right)>log_327\)

=>\(\left\{{}\begin{matrix}1-3x>0\\1-3x>27\end{matrix}\right.\)

=>1-3x>27

=>\(-3x>26\)

=>\(x< -\dfrac{26}{3}\)

Ngô Phương Uyên
Xem chi tiết
Hạnh Hạnh
26 tháng 11 2018 lúc 21:21

\(\log_3\left(x^2-6\right)=\log_3\left(x-2\right)+\log_33\)
\(\log_3\left(x^2-6\right)=\log_3\left[3\left(x-2\right)\right]\)
\(x^2-6=3x-6\)
\(\left\{{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)

Tường Nguyễn Thế
Xem chi tiết
Nhát Gái
Xem chi tiết
shayuri.shayuri.shayuri
Xem chi tiết
HaNa
24 tháng 5 2023 lúc 14:39

a. Vì \(0< 0,1< 1\) nên bất phương trình đã cho 

\(\Leftrightarrow0< x^2+x-2< x+3\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x-2>0\\x^2-5< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x< -2\\x>1\end{matrix}\right.\\-\sqrt{5}< x< \sqrt{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-\sqrt{5}< x< -2\\1< x< \sqrt{5}\end{matrix}\right.\)

Vậy tập nghiệm của bất phương trình là \(S=\left\{-\sqrt{5};-2\right\}\) và \(\left\{1;\sqrt{5}\right\}\)

b. Điều kiện \(\left\{{}\begin{matrix}2-x>0\\x^2-6x+5>0\end{matrix}\right.\)

Ta có:

 \(log_{\dfrac{1}{3}}\left(x^2-6x+5\right)+2log^3\left(2-x\right)\ge0\)

\(\Leftrightarrow log_{\dfrac{1}{3}}\left(x^2-6x+5\right)\ge log_{\dfrac{1}{3}}\left(2-x\right)^2\)

\(\Leftrightarrow x^2-6x+5\le\left(2-x\right)^2\)

\(\Leftrightarrow2x-1\ge0\)

Bất phương trình tương đương với:

\(\left\{{}\begin{matrix}x^2-6x+5>0\\2-x>0\\2x-1\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x< 1\\x>5\end{matrix}\right.\\x< 2\\x\ge\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{1}{2}\le x< 1\)

Vậy tập nghiệm của bất phương trình là: \(\left(\dfrac{1}{2};1\right)\)

Nguyễn Minh Nguyệt
Xem chi tiết
Lê Văn Quốc Huy
29 tháng 3 2016 lúc 15:44

Điều kiện x>0. Nhận thấy x=2 là nghiệm. 

Nếu x>2 thì

\(\frac{x}{2}>\frac{x+2}{4}>1\)\(\frac{x+1}{3}>\frac{x+3}{5}>1\)

Suy ra 

\(\log_2\frac{x}{2}>\log_2\frac{x+2}{4}>\log_4\frac{x+2}{4}\)hay :\(\log_2x>\log_2\left(x+2\right)\)

\(\log_3\frac{x+1}{3}>\log_3\frac{x+3}{5}>\log_5\frac{x+3}{5}\) hay \(\log_3\left(x+1\right)>\log_5\left(x+3\right)\)

Suy ra vế trái < vế phải, phương trình vô nghiệm.

Đáp số x=2