Giải phương trình
\(\log_2x+\log_3\left(x+1\right)=\log_4\left(x+2\right)+\log_5\left(x+3\right)\)
Giải bất phương trình:
\(a,\log_{0,1},1\left(x^2+x-2\right)>\log_{0,1}\left(x+3\right)\)
\(b,\log_{\dfrac{1}{3}}\left(x^2-6x+5\right)+2\log_3\left(2-x\right)\ge0\)
Cho phương trình \(\log_5\left(\log_4\left(\log_3\left(\log_2\left(x^3\right)\right)\right)\right)=\log_2\left(\log_3\left(\log_4\left(\log_5\left(x^2\right)\right)\right)\right)\)
giả sử tập xác định của phương tringf trên có dạng \(\left(-\infty;a\right)\cup\left(b;+\infty\right)\). Chọn khẳng đinh định đúng
a) \(a+b=0\) và nghiệm của phương trình là số chia hết cho 3.
b) \(a-b=0\) và nghiệm của phương trình là số chia hết cho 3.
c) \(a+b=0\) và nghiệm của phương trình là một số lập phương.
d) \(a+b=0\) và nghiệm của phương trình là một số bình phương.
Giải bất phương trình :
\(\log_2\left(\sqrt{x^2-5x+5}+1\right)+\log_3\left(x^2-5x+7\right)\le2\)
Giải phương trình :
\(\log_3\left(x+2\right)=1-\log_3x\)
Giải bất phương trình :
\(\log_3\log_{\frac{1}{2}}\left(x^2-1\right)
Giải các phương trình logarit sau :
a) \(\frac{1}{4+\log_3x}+\frac{1}{2-\log_3x}=1\)
b) \(-\ln^3x+2\ln x=2-\ln x\)
c)\(x^{lg^2x^2-3lgx-\frac{9}{2}}=10^{-2lgx}\)
d) \(\log_2\sqrt{\left|x\right|}-4\sqrt{\log_4\left|x\right|}-5=0\)
Giải phương trình :
\(\log_4x+\log_4\left(10-x\right)=2\)
Giải bất phương trình sau :
\(\left(\frac{1}{6}\right)^x+2\left(\frac{1}{3}\right)^x+3\left(\frac{1}{2}\right)^x