Cho tam giác ABC vuông tại A , đường cao AH biết AB =3cm, CH = 3,2cm. Tính AH
Cho tam giác ABC vuông tại A , đường cao AH biết AB =3cm, CH = 3,2cm. Tính AH
Xét tam giác ABH và tam giác AHC có:
góc H1= góc H2(=90o)
góc A1= góc C1(Phụ góc A2)
\(\Rightarrow\)\(\Delta ABH\Omega\Delta AHC\left(g.g\right)\)
\(\Rightarrow\frac{AB}{AH}=\frac{AH}{HC}\Rightarrow AH^2=AB.HC=3.3,2=9,6\)
\(\Rightarrow AH=\sqrt{9,6}\approx3,1\left(cm\right)\)
Vây AH=3,1cm
cho tam giác abc vuông tại a đường cao ah. Tính AH,AC biết AB=3cm, CH=3,2cm?
Theo hệ thức lượng trong tam giác vuông ta có \(AB^2=BH.BC\Rightarrow3^2=\left(BC-HC\right).BC\Rightarrow BC^2-3,2.BC-9=0\)
\(\Leftrightarrow\orbr{\begin{cases}BC=5\\BC=-\frac{9}{5}\left(l\right)\end{cases}\Leftrightarrow BC=5\left(cm\right)}\)
Theo định lí PItago ta có \(AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)
Ta có \(AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=2,4\left(cm\right)\)
Cho tam giac ABC vuông tại A có đường cao AH . Đặt BH= x (x > 0), hãy tính x đối suy ra độ dài các đoạn AH và AC nếu biết AB = 3cm, CH= 3,2cm Giúp nhanh cho mình với
Lời giải:
Áp dụng HTL trong tam giác vuông:
$AB^2=BH.BC=BH(BH+CH)$
$\Leftrightarrow 3^2=x(x+3,2)$
$\Leftrightarrow x^2+3,2x-9=0$
$\Leftrightarrow (x-1,8)(x+5)=0$
$\Rightarrow x=1,8$ (do $x>0$)
Vậy $x=1,8$ (cm)
Bài 1: Cho tam giác ABC vuông tại A, đường cao AH.
a) Biết AB= 9cm, BC= 15cm. Tính BH, HC
b) Biết BH= 1cm, HC= 3cm. Tính AB, AC
c) Biết AB= 6cm, AC= 8cm. Tính AH, BC
Bài 2: Cho tam giác ABC vuông tại A, đường cao AH. Biết AB= 3cm, BH= 2,4cm
a) Tính BC, AC, AH, HC b) Tính tỉ số lượng giác của góc B
Bài 3: Cho tam giác ABC có BC= 9cm, góc B= 60 độ, góc C= 40 độ, đường cao AH. Tính AH, AB, AC
Bài 1:
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên CH=BC-BH=15-5,4=9,6(cm)
b) Ta có: BH+CH=BC(H nằm giữa B và C)
nên BC=1+3=4(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)
cho tam giác ABC vuông tại A, có đường cao AH, AC=3cm, HB=3,2cm. Tính AH.
Ta có: H thuộc BC ( gt )
=> BC=BH+HC
mà BH=3,2 cm ( gt )
=> BC=3,2+HC
<=>HC=BC-3,2
Xét tam giác ABC có: Góc BAC=90 độ
AH vuông góc vs BC ( gt )
=> AC^2=HC.BC ( hệ thức luợng trong tam giác vuông )
mà HC=BC-3,2 ( cmt )
BH=3,2 cm ( gt )
AC=3 cm ( gt )
=> 3^2=( BC-3,2 ).BC
...... ( bạn tự nhân ra rồi phân tích đa thức thành nhân tử nhé! )
<=> BC=5 cm
mà HC=BC-3,2
=> HC=5-3,2=1,8 cm
Xét tam giác AHC có: Góc AHC=90 độ ( AH vuông góc voiws BC - gt )
=> AH^2+HC^2=AC^2 ( định lý Pytago thuận )
mà HC=1,8 cm ( cmt )
AC= 3 cm ( gt )
=> AH^2+1,8^2=3^2
.... ( bạn tự tính nhé! )
<=> AH= 2,4 cm
Xét tam giác ABC vuông tại A ta có:
\(AB^2=BC\cdot BH\)
\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{\left(\dfrac{2}{3}\right)^2}{12}=\dfrac{1}{27}\left(cm\right)\)
Mà: \(BC=CH+BH\)
\(\Rightarrow CH=12-\dfrac{1}{27}=\dfrac{323}{27}\left(cm\right)\)
\(AC^2=BC\cdot CH\)
\(\Rightarrow AC=\sqrt{BC\cdot CH}=\sqrt{12\cdot\dfrac{323}{27}}=\dfrac{2\sqrt{323}}{3}\left(cm\right)\)
Mà: \(AH\cdot BC=AB\cdot AC\)
\(\Rightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{\dfrac{2}{3}\cdot\dfrac{2\sqrt{323}}{3}}{12}=\dfrac{\sqrt{323}}{27}\left(cm\right)\)
Cho tam giác ABC vuông tại A, đường cao AH. a) Biết AH = 6cm, BH=4,5cm. Tính AB,AC,BC,HC. b) Biết AB = 6cm, BH=3cm. Tính AH,AC,CH
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 3cm, AC = 4cm. a) Tính độ dài các đoạn thẳng AH, CH. b) Vẽ đường thẳng d vuông góc với AC tại C, cắt AH tại D. Kẻ BE vuông góc với CD tại E. Tính góc DAC? Diện tích tam giác BCD? Cho tam giác ABC vuông tại A, đường cao AH . Biết AB =3cm,4C=4cm. a) Tinh độ dài các đoạn thẳng AHẠCH . b) Vẽ đường thẳng d vuông góc với AC tại C, ả cắt AH tại D.Kẻ BE vuông góc với CD tại E. Tỉnh góc D4C ? Diện tích tam giác BCD? c) Chứng minh: 4C* = ABCD. d) Từ H kẻ đường thẳng vuông góc với AC tại I cắt BD tại K. So sánh HI và HK?
1.cho tam giác ABC vông tại A, đường cao AH. Biết AB=3cm, BC=5cm. Tính AC, AH, BH, CH 2. Cho tam giác ABC vông tại A, đường cao AH. Biết HB=3,6cm, HC=6,4cm. Tính BC,AB,AC,AH
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=5^2-3^2=16\)
hay AC=4cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{3^2}{5}=1.8\left(cm\right)\\CH=\dfrac{4^2}{5}=3.2\left(cm\right)\end{matrix}\right.\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot5=3\cdot4=12\)
hay AH=2,4cm
Bài 2:
Ta có: BC=HB+HC
nên BC=3,6+6,4
hay BC=10cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=3.6\cdot10=36\\AC^2=6.4\cdot10=64\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=6\left(cm\right)\\AC=8\left(cm\right)\end{matrix}\right.\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AH^2=6^2-3.6^2=23.04\)
hay AH=4,8cm