Cho GHIK là hình bình hành. Chứng minh: a, ABCD là hình bình hành b,AC, BD, HK, GI đồng quy
cho hình bình hành ABCD (A>90).Gọi H và K lần lượt là hình chiếu của A và C lên BD . M là giao của AB với BK ;N là giao của CD với AH chứng minh
a) AHCK là hình bình hành
b) MN;HK;AC đồng quy
a: Xét ΔAHD vuông tại H và ΔCKB vuông tại K có
AD=BC
\(\widehat{HDA}=\widehat{KBC}\)
Do đó: ΔAHD=ΔCKB
Suy ra: AH=CK
Xét tứ giác AHCK có
AH//CK
AH=CK
Do đó: AHCK là hình bình hành
Cho hình bình hành ABCD có AB=2BC. Gọi M và N là Trung điểm của AB, CD. a) chứng minh rằng AMND là hình thoi. b)chứng minh rằng MBND là hình bình hành. C) chứng minh rằng AC, BD, MN đồng quy
Cho hình bình hành ABCD (AB > AD). Vẽ AE, CF vuông góc BD. AE kéo dài cắt CD tại H và CF kéo dài cắt AB tại K. Chứng minh rằng:
a) Tứ giác AECF là hình bình hành
b) AC, BD, HK đồng quy
a: AE\(\perp\)BD
CF\(\perp\)BD
Do đó: AE//CF
Xét ΔAED vuông tại E và ΔCFB vuông tại F có
AD=CB
\(\widehat{ADE}=\widehat{CBF}\)
Do đó: ΔAED=ΔCFB
=>AE=CF
Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
b: AE//CF
E\(\in\)AH
F\(\in\)CK
Do đó: AH//CK
AB//CD
K\(\in\)AB
H\(\in\)CD
Do đó: AK//CH
Xét tứ giác AHCK có
AH//CK
AK//CH
Do đó: AHCK là hình bình hành
=>AC cắt HK tại trung điểm của mỗi đường(1)
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường(2)
Từ (1) và (2) suy ra AC,HK,BD đồng quy
Bài 1
Cho hình bình hành ABCD gọi E là trung điểm của AD, F là trung điểm của AC
a) chứng minh DE = DF
b) Chứng minh EBFC là hình bình hành
c) Chứng minh EF, BD, AC đồng quy
Bài 2
Cho hình bình hành ABCD kẻ AH , CK vuống góc với đường chéo BDCH , K thuộc BD
a) Chứng minh AH =CK
B) Chứng minh AHCK là hình bình hành
Bài 3
Tính các góc của hình bình hành ABCD biết góc A - góc B = 10 độ
Bài 4
Tứ giác ABCD gọi E, F, G, H là trung điểm của BD, AB, AC, CD
a) chứng minh EF, GH là hình bình hành
b) tính chu vi của hình bình hành EFGH biết AD = 12, BC =16
Mk đag cần gấp mn giúp mk vs
cho hình bình hành ABCD (AB>AD) kẻ AE,CE lần lượt vuông góc BD tại E , F chứng minh rằng : a, AECF Là hình bình hành
b, AE kéo dài cắt CD tại K , CF kéo dài cắt AB tại H . chứng tỏ rằng AC , BD , HK ĐỒNG QUY
ai giúp mk vs mình câu b thôi]
Trường Tiểu học Bến Thủy - Thành phố Vinh Xuất sắc (100 điểm): 0 | Điểm hỏi đáp: 0 |
Cho hình bình hành ABCD. Gọi H và K là hình chiếu của A và C trên đường chéo BD ( H,K thuộc BD). Điểm O là trung điểm của đoạn thẳng HK.
a) chứng minh : tứ giác AHKC là hình bình hành
b) chứng minh: ba điểm A,O,C thẳng hàng
c) Gọi M là giao điẻm của KC và AB , N là giao điểm của AH và CD . Chứng minh AC,BD,MN đồng quy
Cho hình bình hành ABCD. Gọi H và K là hình chiếu của A và C trên đường chéo BD ( H,K thuộc BD). Điểm O là trung điểm của đoạn thẳng HK.
a) chứng minh : tứ giác AHKC là hình bình hành
b) chứng minh: ba điểm A,O,C thẳng hàng
c) Gọi M là giao điẻm của KC và AB , N là giao điểm của AH và CD . Chứng minh AC,BD,MN đồng quy
Cho hình bình hành ABCD có M,N là trung điểm của AB và CD,AN và CM cắt BD ở E và F.
a)Chứng minh AMCN là hình bình hành
b)Chứng minh AC;MN;EF đồng quy
Cho hình bình hành ABCD, tia phân giác góc B cắt CD tại M, tia phân giác góc D cắt AB tại N
a) chứng minh rằng BMDN là hình bình hành
b)chứng minh rằng AC, BD, MN đồng quy
(Tự vẽ hình nhen)
a,Ta có ABCD là hbh => gADC=gABC(1)
BM là phân giác gABC(gt)=>gABM=1/2gABC(2)
DN là phân giác gADC(gt)=>gMDN=1/2gADC(3)
Từ(1),(2) và (3)=> gNDM=gNBM
Mặt khác NB//DM(t/c hbh)=> BMDN là hbh
b,Gọi O là giao điểm của AC và BD(4)
=>O là trung điểm của BD(t/c hbh)
Ta lại có BMDN là hbh(câu a)=>O cũng là trung điểm của MN(5)
Từ (4) và (5)=>AC,BD,MN đồng quy tại O