Những câu hỏi liên quan
T-râm huyền thoại
Xem chi tiết
Chitanda Eru (Khối kiến...
1 tháng 10 2018 lúc 20:25

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\Rightarrow\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{b\cdot d}=k^2\) (1)

\(\Rightarrow\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\dfrac{\left[k\left(b+d\right)\right]^2}{\left(b+d\right)^2}\)\(=\dfrac{k^2\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\) (2)

Từ (1) và (2) \(\Rightarrow\dfrac{ac}{bd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

Nhữ Thanh Hà
Xem chi tiết
Nguyễn Thanh Liêm
10 tháng 9 2017 lúc 20:50

2.Đặt\(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Ta có: \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=\dfrac{k^2\cdot bd}{bd}=k^2\) (1)

\(\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\dfrac{k^2\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\left(2\right)\)

Từ(1)và (2) suy ra \(\dfrac{ac}{bd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\) (đpcm)

cam đoan ko chép mạng 100%

Vũ Ngọc Minh Anh
Xem chi tiết
Nguyễn Thị Thảo
17 tháng 3 2017 lúc 20:24

b)Ta có:

\(\left|x+\dfrac{1}{1.2}\right|\ge0,\left|x+\dfrac{1}{2.3}\right|\ge0,...,\left|x+\dfrac{1}{99.100}\right|\ge0\)\(\Rightarrow\)\(\left|x+\dfrac{1}{1.2}\right|+\left|x+\dfrac{1}{2.3}\right|+...+\left|x+\dfrac{1}{99.100}\right|\ge0\)\(\Rightarrow100x\ge0\Rightarrow x\ge0\)

\(\Rightarrow x+\dfrac{1}{1.2}+x+\dfrac{1}{2.3}+...+x+\dfrac{1}{99.100}=100x\)\(\Rightarrow x+x+...+x+\dfrac{1}{1.2}+\dfrac{1}{2.3}+....+\dfrac{1}{99.100}=100x\)\(\Rightarrow99x+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+..+\dfrac{1}{99}-\dfrac{1}{100}=100x\)\(\Rightarrow1-\dfrac{1}{100}=x\)

\(\Rightarrow x=\dfrac{99}{100}\)

công chúa Serenity
Xem chi tiết
Hoang Thiên Di
21 tháng 7 2017 lúc 8:33

Bài 2 : đề bài này chỉ cần a,b>0 , ko cần phải thuộc N* đâu

a, Áp dụng bất đẳng thức AM-GM cho 2 số lhoong âm a,b ta được :

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ba}}=2\) . Dấu "=" xảy ra khi a=b

b , Áp dụng BĐT AM-GM cho 2 số không âm ta được : \(a+b\ge2\sqrt{ab}\)

\(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{ab}}=\dfrac{2}{\sqrt{ab}}\)

Nhân vế với vế ta được :

\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2.2.\dfrac{\sqrt{ab}}{\sqrt{ab}}=4\left(đpcm\right)\)

Dấu "="xảy ra tại a=b

Go!Princess Precure
21 tháng 7 2017 lúc 8:36

Bài 1.

Vì a, b, c, d \(\in\) N*, ta có:

\(\dfrac{a}{a+b+c+d}< \dfrac{a}{a+b+c}< \dfrac{a}{a+b}\)

\(\dfrac{b}{a+b+c+d}< \dfrac{b}{a+b+d}< \dfrac{b}{a+b}\)

\(\dfrac{c}{a+b+c+d}< \dfrac{c}{b+c+d}< \dfrac{c}{c+d}\)

\(\dfrac{d}{a+b+c+d}< \dfrac{d}{a+c+d}< \dfrac{d}{c+d}\)

Do đó \(\dfrac{a}{a+b+c+d}+\dfrac{b}{a+b+c+d}+\dfrac{c}{a+b+c+d}+\dfrac{d}{a+b+c+d}< M< \left(\dfrac{a}{a+b}+\dfrac{b}{a+b}\right)+\left(\dfrac{c}{c+d}+\dfrac{d}{c+d}\right)\)hay 1<M<2.

Vậy M không có giá trị là số nguyên.

Hoang Thiên Di
21 tháng 7 2017 lúc 8:49

Bài 1 :

Xét BĐT : \(\dfrac{m}{n}< \dfrac{m+x}{n+x}\) , với x > 0 và m<n

<=>m(n+x) < n(m+x)

<=>mn+mx < mn + nx

<=> mx < nx <=> m<n ( hiển nhiên đúng )

* Chứng minh M > 1

Ta có : \(\dfrac{a}{a+b+c}>\dfrac{a}{a+b+c+d}\)

\(\dfrac{b}{b+a+d}>\dfrac{b}{a+b+c+d}\)

\(\dfrac{c}{b+c+d}>\dfrac{c}{a+b+c+d}\)

\(\dfrac{d}{a+c+d}>\dfrac{d}{a+b+c+d}\)

Cộng vế với vế ta suy ra :

M > \(\dfrac{a+b+c+d}{a+b+c+d}=1\) (*)

* Chứng minh A < 2

\(\dfrac{a}{a+b+c}< \dfrac{a+d}{a+b+c+d}\)

\(\dfrac{b}{b+a+d}< \dfrac{b+c}{a+b+c+d}\)

\(\dfrac{c}{b+c+d}< \dfrac{c+a}{a+b+c+d}\)

\(\dfrac{d}{a+c+d}< \dfrac{d+b}{a+b+c+d}\)

Cộng vế với vế => M < 2 (**)

Từ (*) và (**) => 1<M<2 => M không có giá trị nguyên

hoa hồng
Xem chi tiết
Nguyễn Quang Ngọc Trác
18 tháng 10 2017 lúc 5:20

bz-cy/a = cx- az /b = ay-bx /c => bxz-cxy / ax = cxy-azy / b = azy-bxz/c = bxz-cxy + cxy-azy+azy-bxz / a+b+c = 0/ a+b+c = 0

Suy ra : bz -cy/a = 0 => bz-cy=0 => bz = cy => z/c = b/y

cx-az/b = 0 => cx-az=0 => cx=az => x/a = z/c

ay-bx/c = 0 => ay-bx = 0 => ay=bx=> y/b = x/a

Vậy x/a=y/b=c/z

Vũ Minh Hằng
Xem chi tiết
Ngô Tấn Đạt
26 tháng 9 2017 lúc 18:58

Áp dụng tính chất dãy tỉ số bằng nhau ; ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\\ \Rightarrow\dfrac{ac}{bd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

Trần Bình Minh
12 tháng 9 2017 lúc 20:04

Trong sách có nhé , bạn ạ

Nguyễn Thị Bình Yên
Xem chi tiết
Nguyễn Thị Bình Yên
5 tháng 12 2018 lúc 13:20

@Akai Haruma

piojoi
Xem chi tiết
HT.Phong (9A5)
9 tháng 8 2023 lúc 18:29

Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có VT:

\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}\)

\(=\dfrac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\dfrac{b^2}{d^2}\) (1)

VT: \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\) (2)

Từ (1) và (2) 

\(\Rightarrow\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}\left(đpcm\right)\)

Toru
9 tháng 8 2023 lúc 18:27

Có: \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ab=cd\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)\(\Leftrightarrow\left(\dfrac{a}{c}\right)^2=\left(\dfrac{b}{d}\right)^2=\dfrac{ab}{cd}=\left(\dfrac{a-b}{c-d}\right)^2\)

Vậy...

KaKa Ri
Xem chi tiết
Nguyễn Thanh Hằng
8 tháng 8 2017 lúc 20:27

Ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Leftrightarrow\dfrac{aa}{bb}=\dfrac{a^2+a^2}{b^2+b^2}\)

\(\Leftrightarrow\dfrac{a^2}{b^2}=\dfrac{a^2.2}{b^2.2}\)

\(\Leftrightarrow\dfrac{a^2}{b^2}=\dfrac{a^2}{b^2}\)

\(\Leftrightarrow\dfrac{ac}{bd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\rightarrowđpcm\)

Lê Gia Bảo
8 tháng 8 2017 lúc 20:41

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=kb\\c=kd\end{matrix}\right.\)

VT: \(\dfrac{ac}{bd}=\dfrac{kb.kd}{b.d}=k^2\) (1)

VP: \(\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{\left(kb+kd\right)^2}{\left(b+d\right)^2}=\dfrac{\left[k.\left(b+d\right)\right]^2}{\left(b+d\right)^2}=\dfrac{k^2.\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\) (2)

Từ (1) (2), suy ra:

\(\dfrac{ac}{bd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\) (đpcm)

Trần Quốc Lộc
9 tháng 8 2017 lúc 9:33

Theo bài ra ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{a+c}{b+d}\)

\(\Rightarrow\left(\dfrac{a}{b}\right)^2=\left(\dfrac{a+c}{b+d}\right)^2\) \(\left(1\right)\)

Theo bài ra ta lại có : \(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\left(\dfrac{a}{b}\right)^2=\dfrac{ac}{bd}\) \(\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) suy ra : \(\left(\dfrac{a+c}{b+d}\right)^2=\left(\dfrac{a}{b}\right)^2=\dfrac{ab}{cd}\)

\(\Rightarrow\left(\dfrac{a+c}{b+d}\right)^2=\dfrac{ab}{cd}\left(ĐPCM\right)\)

Vậy \(\left(\dfrac{a+c}{b+d}\right)^2=\dfrac{ab}{cd}\)