Bài 2 : đề bài này chỉ cần a,b>0 , ko cần phải thuộc N* đâu
a, Áp dụng bất đẳng thức AM-GM cho 2 số lhoong âm a,b ta được :
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ba}}=2\) . Dấu "=" xảy ra khi a=b
b , Áp dụng BĐT AM-GM cho 2 số không âm ta được : \(a+b\ge2\sqrt{ab}\)
\(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{ab}}=\dfrac{2}{\sqrt{ab}}\)
Nhân vế với vế ta được :
\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2.2.\dfrac{\sqrt{ab}}{\sqrt{ab}}=4\left(đpcm\right)\)
Dấu "="xảy ra tại a=b
Bài 1.
Vì a, b, c, d \(\in\) N*, ta có:
\(\dfrac{a}{a+b+c+d}< \dfrac{a}{a+b+c}< \dfrac{a}{a+b}\)
\(\dfrac{b}{a+b+c+d}< \dfrac{b}{a+b+d}< \dfrac{b}{a+b}\)
\(\dfrac{c}{a+b+c+d}< \dfrac{c}{b+c+d}< \dfrac{c}{c+d}\)
\(\dfrac{d}{a+b+c+d}< \dfrac{d}{a+c+d}< \dfrac{d}{c+d}\)
Do đó \(\dfrac{a}{a+b+c+d}+\dfrac{b}{a+b+c+d}+\dfrac{c}{a+b+c+d}+\dfrac{d}{a+b+c+d}< M< \left(\dfrac{a}{a+b}+\dfrac{b}{a+b}\right)+\left(\dfrac{c}{c+d}+\dfrac{d}{c+d}\right)\)hay 1<M<2.
Vậy M không có giá trị là số nguyên.
Bài 1 :
Xét BĐT : \(\dfrac{m}{n}< \dfrac{m+x}{n+x}\) , với x > 0 và m<n
<=>m(n+x) < n(m+x)
<=>mn+mx < mn + nx
<=> mx < nx <=> m<n ( hiển nhiên đúng )
* Chứng minh M > 1
Ta có : \(\dfrac{a}{a+b+c}>\dfrac{a}{a+b+c+d}\)
\(\dfrac{b}{b+a+d}>\dfrac{b}{a+b+c+d}\)
\(\dfrac{c}{b+c+d}>\dfrac{c}{a+b+c+d}\)
\(\dfrac{d}{a+c+d}>\dfrac{d}{a+b+c+d}\)
Cộng vế với vế ta suy ra :
M > \(\dfrac{a+b+c+d}{a+b+c+d}=1\) (*)
* Chứng minh A < 2
\(\dfrac{a}{a+b+c}< \dfrac{a+d}{a+b+c+d}\)
\(\dfrac{b}{b+a+d}< \dfrac{b+c}{a+b+c+d}\)
\(\dfrac{c}{b+c+d}< \dfrac{c+a}{a+b+c+d}\)
\(\dfrac{d}{a+c+d}< \dfrac{d+b}{a+b+c+d}\)
Cộng vế với vế => M < 2 (**)
Từ (*) và (**) => 1<M<2 => M không có giá trị nguyên
Bài 1:
Với \(a,b,c,d>0\)
\(M>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}=1\)
Mặt khác:
\(M=1-\frac{b+c}{a+b+c}+1-\frac{a+d}{a+b+d}+1-\frac{b+d}{b+c+d}+1-\frac{a+c}{a+c+d}\)
\(=4-\left ( \frac{b+c}{a+b+c}+\frac{a+d}{a+b+d}+\frac{b+d}{b+c+d}+\frac{a+c}{a+c+d} \right )\)
\(<4-\left ( \frac{b+c}{a+b+c+d}+\frac{a+d}{a+b+c+d}+\frac{b+d}{a+b+c+d}+\frac{a+c}{a+b+c+d} \right )=2\)
Vậy \(1 < M <2\Rightarrow M\not\in\mathbb{Z}\) (đpcm)
Bài 2:
a) Ta có \(\frac{a}{b}+\frac{b}{a}\geq 2\Leftrightarrow \frac{a^2+b^2}{ab}-2\geq 0\Leftrightarrow \frac{(a-b)^2}{ab}\geq 0\)
BĐT luôn đúng với mọi \(a,b>0\), do đó ta có đpcm
Dấu bằng xảy ra khi \(a=b\)
b) Áp dụng phần a:
\((a+b)\left (\frac{1}{a}+\frac{1}{b}\right)=2+\frac{a}{b}+\frac{b}{a}\geq 2+2=4\)
Do đó ta có đpcm.
Bài 2.
a) * Xét a=b ta có \(\dfrac{a}{b}+\dfrac{b}{a}=\dfrac{a}{a}+\dfrac{a}{a}=2\).
* Xét a >b đặt a=b+m; m\(\in\)N*.
Ta có \(\dfrac{a}{b}+\dfrac{b}{a}=\dfrac{b+m}{b}+\dfrac{b}{b+m}=\dfrac{b}{b}+\dfrac{m}{b}+\dfrac{b}{b+m}=1+\dfrac{m}{b}+\dfrac{b}{b+m}>1+\dfrac{m}{b+m}+\dfrac{b}{b+m}=2\)* Xét a< b. Tương tự trên ta cũng có \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\).
\(\Rightarrow\) \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\) với a, b \(\in\) N*.
Câu b tương tự nhé