Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thị Trà My
Xem chi tiết
shitbo
16 tháng 11 2020 lúc 21:08

e có 2 chia hết cho d; 2n+3 lẻ nên (2n+3,4n+8)=1

còn n+1-n=1 nên (n,n+1)=1

Khách vãng lai đã xóa
Lê Yến My
Xem chi tiết
Nguyễn Đình Dũng
10 tháng 11 2016 lúc 5:22

Gọi d là ƯCLN của n và n+1

=> n chia hết cho d;n+1 chia hết cho d

=> n+1-n chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy n và n+1 nguyên tố cùng nhau với mọi n

Lê Trọng Quý
Xem chi tiết
Nguyễn Đăng Nhân
26 tháng 9 2023 lúc 20:02

Gọi d là ước chung lớn nhất của 2 số. Nhiệm vụ của ta là chứng minh d=1.

a) 2n+3, n+2 \(⋮d\)

\(\Rightarrow\left(2n+3\right)-\left(n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

b) n+1, 3n+4

\(\Rightarrow\left(3n+4\right)-3\left(n+1\right)⋮d\)

\(\Rightarrow1⋮d\)

c) 2n+3, 3n+4

\(\Rightarrow3\left(2n+3\right)-2\left(3n+4\right)⋮d\)

\(\Rightarrow1⋮d\)

Phan Thị Dung
26 tháng 9 2023 lúc 20:17

𝓪, 𝓖𝓸̣𝓲 𝓤̛𝓒𝓛𝓝\(\left(2n+3,n+2\right)=d\)

\(\Rightarrow2n+3⋮d\)  

\(\Rightarrow n+2⋮d\Rightarrow2.\left(n+2\right)⋮d\Rightarrow2n+4⋮d\)

\(\Rightarrow2n+4-2n+3⋮d\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow\)𝓤̛𝓒𝓛𝓝\(\left(2n+3,n +2\right)=1\)

𝓥𝓪̣̂𝔂 \(2n+3,n+2\) 𝓵𝓪̀ 𝓱𝓪𝓲 𝓼𝓸̂́ 𝓷𝓰𝓾𝔂𝓮̂𝓷 𝓽𝓸̂́ 𝓬𝓾̀𝓷𝓰 𝓷𝓱𝓪𝓾

 

Phan Thị Dung
26 tháng 9 2023 lúc 20:27

𝓫, 𝓖𝓸̣𝓲 𝓤̛𝓒𝓛𝓝\(\left(n+1,3n+4\right)=d\)

\(\Rightarrow3n+4⋮d\)

\(\Rightarrow n+1⋮d\Rightarrow3\left(n+1\right)⋮d\Rightarrow3n+3⋮d\)

\(\Rightarrow3n+4-\left(3n+3\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow\)𝓤̛𝓒𝓛𝓝\(\left(n+1,3n+4\right)=1\)

𝓥𝓪̣̂𝔂 \(n+1,3n+4\) 𝓵𝓪̀ 𝓱𝓪𝓲 𝓼𝓸̂́ 𝓷𝓰𝓾𝔂𝓮̂𝓷 𝓽𝓸̂́ 𝓬𝓾̀𝓷𝓰 𝓷𝓱𝓪𝓾

𝓑𝓪̣𝓷 𝓸̛𝓲, 𝓬𝓱𝓸 𝓶𝓲̀𝓷𝓱 𝓼𝓾̛̉𝓪 𝓵𝓪̣𝓲 𝓸̛̉ 𝓬𝓪̂𝓾 𝓪 𝓷𝓱𝓪, 𝓬𝓱𝓸̂̃ 2𝓷+4-(2𝓷+3) 𝓹𝓱𝓪̉𝓲 𝓽𝓱𝓮̂𝓶 𝓷𝓰𝓸𝓪̣̆𝓬 𝓸̛̉ 2𝓷+3 𝓷𝓱𝓪!

 

Vương Ngọc Mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2023 lúc 14:20

1:

a: Gọi d=ƯCLN(n+5;n+4)

=>\(\left\{{}\begin{matrix}n+5⋮d\\n+4⋮d\end{matrix}\right.\)

=>\(n+5-n-4⋮d\)

=>\(1⋮d\)

=>d=1

=>n+4 và n+5 là hai số nguyên tố cùng nhau

b: Gọi d=ƯCLN(2n+5;n+2)

=>\(\left\{{}\begin{matrix}2n+5⋮d\\n+2⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2n+5⋮d\\2n+4⋮d\end{matrix}\right.\)

=>\(2n+5-2n-4⋮d\)

=>\(1⋮d\)

=>d=1

=>2n+5 và n+2 là hai số nguyên tố cùng nhau

c: Gọi d=ƯCLN(3n+7;n+2)

=>\(\left\{{}\begin{matrix}3n+7⋮d\\n+2⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3n+7⋮d\\3n+6⋮d\end{matrix}\right.\)

=>\(3n+7-3n-6⋮d\)

=>\(1⋮d\)

=>d=1

=>3n+7 và n+2 là hai số nguyên tố cùng nhau

d: Gọi d=ƯCLN(2n+1;3n+1)

=>\(\left\{{}\begin{matrix}2n+1⋮d\\3n+1⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}6n+3⋮d\\6n+2⋮d\end{matrix}\right.\)

=>\(6n+3-6n-2⋮d\)

=>\(1⋮d\)

=>d=1

=>2n+1 và 3n+1 là hai số nguyên tố cùng nhau

HT.Phong (9A5)
15 tháng 10 2023 lúc 14:24

a) Gọi d là ƯCLN  của n + 4 và n + 5 

⇒ n + 4 ⋮ d và n + 5 ⋮ d 

⇒ (n + 5 - n - 4) ⋮ d

⇒ 1 ⋮ d

⇒ d = 1

Vậy n + 4 và n + 5 luôn là cặp SNT cùng nhau 

b) Gọi d là ƯCLN của 2n + 5 và n + 2

⇒ 2n + 5 ⋮ d và n + 2 ⋮ d

⇒ 2n + 5 ⋮ d và 2(n + 2) ⋮ d

⇒ (2n + 5 - 2n - 4) ⋮ d

⇒ 1 ⋮ d

⇒ d = 1

Vậy  2n + 5 và n + 2 luôn là cặp SNT cùng nhau 

c) Gọi d là ƯCLN của n + 2 và 3n + 7 

⇒ n + 2 ⋮ d và 3n + 7 ⋮ d

⇒ 3(n + 2) ⋮ d và 3n + 7 ⋮ d

⇒ (3n + 7 - 3n - 6) ⋮ d 

⇒ 1 ⋮ d 

⇒ d = 1

Vậy n + 2 và 3n + 7 luôn là cặp SNT cùng nhau

d) Gọi d là ƯCLN của 2n + 1 và 3n + 1

⇒ 2n + 1 ⋮ d và 3n + 1 ⋮ d

⇒ 3(2n + 1) ⋮ d và 2(3n + 1) ⋮ d

⇒ (6n + 3 - 6n - 2) ⋮ d

⇒ 1 ⋮ d

⇒ d = 1

Vậy 2n + 1 và 3n + 1 luôn là cặp SNT cùng nhau 

mèo mướp cute
Xem chi tiết
Nguyễn Hoàng Minh
17 tháng 10 2021 lúc 8:17

\(a,\) Gọi \(d=ƯCLN\left(n+1;n+2\right)\)

\(\Rightarrow n+1⋮d;n+2⋮d\\ \Rightarrow n+2-n-1⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)

Vậy \(ƯCLN\left(n+1;n+2\right)=1\) hay n+1 và n+2 ntcn

\(b,\) Gọi \(d=ƯCLN\left(3n+10;3n+9\right)\)

\(\Rightarrow3n+10⋮d;3n+9⋮d\\ \Rightarrow3n+10-3n-9⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)

Vậy 3n+10 và 3n+9 ntcn

Nguyễn Thị Thùy Dương
Xem chi tiết
Bùi thảo ly
Xem chi tiết
DSQUARED2 K9A2
30 tháng 8 2023 lúc 15:37

b: Gọi d=ƯCLN(2n+1;n+1)

=>2n+1 chia hết cho d và n+1 chia hết cho d

=>2n+2 chia hết cho d và 2n+1 chia hết cho d

=>2n+2-2n-1 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

DSQUARED2 K9A2
30 tháng 8 2023 lúc 15:38

Bạn tham khảo nhé 

Bùi thảo ly
30 tháng 8 2023 lúc 15:56

thanks

Bùi Am Tường
Xem chi tiết
Lê Mạnh Hùng
17 tháng 10 2021 lúc 15:47

L:

a) Gọi d là UCLN ( n ; n+1 )                    

n+1 chia hết cho d                                             

n chia hết cho d                                               

-> n+1-n chia hết cho d                                 

-> 1chia hết cho d

=>N và n+1 là 2 số nguyên tố cùng nhau

=>ĐPCM                                       

^HT^

Khách vãng lai đã xóa
Bùi Am Tường
17 tháng 10 2021 lúc 15:50

cảm ỏn nha

Khách vãng lai đã xóa
Thân Đức Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 10 2023 lúc 23:11

a: Gọi d=ƯCLN(6n+5;2n+1)

=>\(\left\{{}\begin{matrix}6n+5⋮d\\2n+1⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}6n+5⋮d\\6n+3⋮d\end{matrix}\right.\Leftrightarrow6n+5-6n-3⋮d\)

=>\(2⋮d\)

mà 2n+1 là số lẻ

nên d=1

=>2n+1 và 6n+5 là hai số nguyên tố cùng nhau

b: Gọi d=ƯCLN(3n+2;5n+3)

=>\(\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)

=>\(15n+10-15n-9⋮d\)

=>\(1⋮d\)

=>d=1

=>3n+2 và 5n+3 là hai số nguyên tố cùng nhau

Đỗ Ngọc Hà Giang
Xem chi tiết
Akai Haruma
18 tháng 11 2023 lúc 20:12

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

Akai Haruma
18 tháng 11 2023 lúc 20:15

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

Akai Haruma
18 tháng 11 2023 lúc 20:16

Bài 2:

c.

Gọi $d=ƯCLN(2n+1, n+1)$

$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$

Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.

d.

Gọi $d=ƯCLN(n+1, 3n+4)$

$\Rightarrow n+1\vdots d; 3n+4\vdots d$

$\Rightarrow 3n+4-3(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$

$\Rightarrow$ 2 số này nguyên tố cùng nhau.