Cho \(\widehat{yBC}=\widehat{ACB}+\widehat{xAC}\) . CMR: Ax//By
cho 2 tia Ax//By với Ax,By cùng phía đối với AB, Gọi C là điểm bất kì trên mặt phẳng, biết \(\widehat{xAC}\)=anpha,\(\widehat{yBC}\)=beta.Tính \(\widehat{ACB}\)
Cho hình vẽ, biết Ax//By và \(\widehat{CBy}\) \(>\widehat{ACB.}\) Chứng minh rằng \(\widehat{yBC}\)\(=\widehat{xAC}\)\(+\widehat{ACB}\)
Gọi By' là tia đối của tia By.
Gọi I là giao điểm của AC và yy'
By//Ax (gt) nên By'//Ax
Do By'//Ax nên xAC=AIy' ( so le trong)
Ta lại có: AIy=BIC ( đối đỉnh)
Do yBC là góc ngoài tại đỉnh B của tam giác BCI nên:
yBC=BIC+ACB
Mà xAC=AIy'
BIC=AIy'
=> xAC=BIC
Do đó yBC=xAC+ACB (đpcm)
Cho hình vẽ , biết \(\widehat{CBy}>\widehat{ACB}\)
CMR : Nếu Ax // By thì \(\widehat{CAx}+\widehat{CBy}-\widehat{ACB}=180^0\)
1. Cho tam giác ABC. Trên nửa mặt phẳng bờ AC ko chứa B vẽ tia Ax sao cho \(\widehat{xAC}\) = \(\widehat{ACB}\). Trên nửa mặt phẳng bờ AB ko chứa C vẽ tia Ay sao cho \(\widehat{yAB}\) = \(\widehat{ABC}\). Qua C kẻ đường thẳng d vuông góc với BC. Đường thẳng d có vuông góc với xy không? Vì sao?
Gíup mình giải bài này với!
a) Ta có: mà hai góc đó là hai góc so le trong nên
suy ra (1)
mà hai góc đó là hai góc so le trong nên suy ra (2)
Từ (1) và (2) suy ra Ax và Ay cùng // BC.
Lại có tia Ax thuộc mặt phẳng bờ AB có chứa điểm C, tia Ay thuộc mặt phẳng
bờ AB không chứa điểm C
Ax và Ay là hai tia đối nhau.
b) Vì Ax và Ay là hai tia đối nhau (cmt) mà và
nên suy ra
Mà nên suy ra
Bài 2: (Vẽ hình) Cho \(\widehat{xOy}\). Trên tia \(Ox\) lấy điểm \(A\), trên tia \(Oy\) lấy điểm \(B\) sao cho \(OA=OB\). Gọi \(C\) là 1 điểm trên tia phân giác \(Oz\) của \(\widehat{xOy}\). Chứng minh rằng:
a, \(AC=BC\)
\(\widehat{xAC}=\widehat{yBC}\)
b, \(OC=OB\)
`a,`
Xét $\Delta OAC$ và $\Delta ABC$ ta có `:`
`OA=OB(gt)`
\(\widehat{AOC}=\widehat{BOC}\) `( Oz` là tia phân giác \(\widehat{B}\) `)`
Chung `Oz`
`=>` $\Delta OAC$ `=` $\Delta ABC$ `(c.g.c)`
`=>` `{(\hat{OAC}=\hat{OBC} \text{( 2 góc tương ứng )} ),(AC=BC \text{ (2 cạnh tương ứng)}):}`
Từ `\hat{OAC}=\hat{OBC}`
`=>` `\hat{xAC}=\hat{yBC}` `(` kề bù với `2` góc bằng nhau `)`
`b,` Xem lại đề bài `: OC=OB?`
Cho hình vẽ biết \(\widehat{ACB}\) lớn hơn \(\widehat{CAX}\) và Ax // By
Chứng minh \(\widehat{ACB}\)= \(\widehat{BAx}\)+ \(\widehat{CBy}\)
cho tam giác ABC có góc B > góc C và góc ngoài BAx. Tia phan giác của góc BAx cắt tia CB tại E.
a. CMR: góc E = \(\dfrac{1}{2}\widehat{B\text{Ax}}-\widehat{C}\)
b. CMR: \(\widehat{E}=\widehat{ABC}-\dfrac{1}{2}\widehat{B\text{Ax}}\)
c. CMR: \(2\widehat{E}=\widehat{ABC}-\widehat{ACB}\)
a: \(\widehat{EAB}=\dfrac{180^0-\widehat{BAC}}{2}=\dfrac{\widehat{ABC}+\widehat{ACB}}{2}\)
\(\widehat{EBA}=180^0-\widehat{ABC}\)
=>\(\widehat{EAB}+\widehat{EBA}=\dfrac{1}{2}\widehat{ABC}+\dfrac{1}{2}\widehat{ACB}+180^0-\widehat{ABC}=-\dfrac{1}{2}\widehat{ABC}+\dfrac{1}{2}\widehat{ACB}+180^0\)
=>\(\widehat{E}=180^0+\dfrac{1}{2}\widehat{ABC}-\dfrac{1}{2}\widehat{ACB}-180^0=\dfrac{1}{2}\widehat{ABC}-\dfrac{1}{2}\widehat{ACB}\)
=>góc E=1/2góc BAx-góc C
b: góc E=1/2góc BAx-góc BAx+góc B
=góc B-1/2góc xAB
c: góc E=1/2góc ABC-1/2góc ACB
=>2*góc E=góc ABC-góc ACB
Cho tam giác ABC có \(\widehat{A}=100^0,\widehat{C}=40^0\) . Tia Ax là tia đối của tia AB, Tia Ay là tia phân giác của \(\widehat{xAC}\) . CMR Ax // BC
góc xAC=180-100=80 độ
=>góc yAC=80/2=40 độ=góc ACB
=>Ay//BC
Cho tam giác ABC có \(\widehat{C}< \widehat{B}< 90\)độ . Vẽ đường phân giác AD và đường cao AH của tam giác ABC.
a. CMR: \(\widehat{HAB}+\widehat{HAD}=\widehat{HAC}-\widehat{HAD}\)
b. CMR: \(\widehat{HAC}-\widehat{HAB}=\widehat{ABC}-\widehat{ACB}\)
c. CMR: \(\widehat{DAH}=\dfrac{1}{2}\left(\widehat{ABC}-\widehat{ACB}\right)\)
a. Ta có: \(\widehat{HAB}+\widehat{HAD}=\widehat{BAD}\)
\(\widehat{HAC}-\widehat{HAD}=\widehat{DAC}\)
Vì AD là tia phân giác của góc BAC => \(\widehat{BAD}=\widehat{DAC}\) =.> ĐPCM
b. Xét tam giác HAC có \(\widehat{AHC}+\widehat{HCA}+\widehat{HAC}=180\text{đ}\text{ộ}\)
=>\(\widehat{HAC}=180^o-\widehat{AHC}-\widehat{HCA}\)
Xét tam giác HAB có \(\widehat{HAB}+\widehat{ABH}+\widehat{BHA}=180^o\)
=> \(\widehat{HAB}=180^o-\widehat{ABH}-\widehat{BHA}\)
Ta có: \(\widehat{HAC}-\widehat{HAB}=180^o-\widehat{AHC}-\widehat{HAC}-\left(180^o-\widehat{ABH}-\widehat{BHA}\right)\)
\(=180^o-90^o-\widehat{HCA}-180^o+\widehat{ABH}+90^o\)
\(=180^o-180^o+90^o-90^o+\widehat{ABH}-\widehat{HCA}\)
\(=\widehat{ABH}-\widehat{HCA}=>\text{Đ}PCM\)
c. Ta có: \(\dfrac{1}{2}\left(\widehat{ABC}-\widehat{ACB}\right)=\dfrac{\widehat{ABC}-\widehat{ACB}}{2}=\dfrac{\widehat{HAC}-\widehat{HAB}}{2}\)
\(=\dfrac{2\widehat{DAH}}{2}=\widehat{DAH}=>\text{Đ}pcm\)
cho tam giác ABC có \(\widehat{C}< \widehat{B}\). Vẽ đường phân giác AD và đường cao AH của tam giác ABC
a. CMR: \(\widehat{ADC}-\widehat{ADB}=\widehat{ABC}-\widehat{ACB}\)
b. CMR: \(\widehat{DAH}=90^o-\widehat{ADB}\) và \(\widehat{DAH}=\widehat{ADC}-90^o\)
c. CMR: \(2\widehat{ADH}=\widehat{ADC}-\widehat{ADB}\)
d. CMR: \(\widehat{DAH}=\dfrac{1}{2}\left(\widehat{ABC}-\widehat{ACB}\right)\)
a: góc ADC-góc ADB
=góc BAD+góc ABD-góc DAC-góc C
=góc ABC-góc ACB
b: ΔAHD vuông tại H
nên góc HAD+góc ADH=90 độ
=>góc DAH=90 độ-góc ADH
=90 độ-180 độ+góc ADC
=góc ADC-90 độ