Cho tam giác ABC, qua điểm A vẽ đường thẳng a // BC và qua điểm B vẽ đường thẳng b // AC. Chứng minh rằng: a và luôn luôn cắt nhau
Cho tam giác ABC, qua điểm A vẽ đường thẳng a // BC và qua điểm B vẽ đường thẳng b // AC. Chứng minh rằng: a và luôn luôn cắt nhau
Cho tam giác ABC qua điểm A vẽ đường thẳng a // BC và qua điểm B vẽ đường thẳng b // AC. Chứng tỏ a và b luôn luôn cắt nhau
cho một tam giác ABC có AB=AC; O là trung điểm của BC.
a)chứng minh rằng: tam giác ABO bằng tam giác ACO
b)Qua điểm A vẽ đường thẳng song song với BC và qua điểm B vẽ đường thẳng vuông góc với BC, hai đường thẳng này cắt nhau tại K. Chứng minh rằng : AK=OC
GIÚP MÍNH CÂU b) NHA
Ta có hình vẽ sau:
a) Vì AB = AC => ΔABC cân => \(\widehat{ABC}=\widehat{ACB}\)
Xét ΔABO và ΔACO có:
AO: cạnh cung
\(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)
OB = OC (gt)
=> ΔABO = ΔACO (đpcm)
b) Vì AK // BC(gt) => \(\widehat{KAB}=\widehat{ABO}\) (so le trong)
Mà \(\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{KAB}=\widehat{ACB}\) (*)
Vì ΔABO = ΔACO (ý a) => \(\widehat{A_1}=\widehat{A_2}\)
mà \(\widehat{A_1}=\widehat{ABK}\) (so le trong do AK // BC)
=> \(\widehat{A_2}=\widehat{ABK}\) (**)
Xét ΔABK và ΔACO có:
\(\widehat{KAB}=\widehat{ACB}\) (*)
AB = AC (gt)
\(\widehat{A_2}=\widehat{ABK}\) (**)
=> ΔABK = ΔACO (g.c.g)
=> AK = OC (đpcm)
Cho tam giác ABC. Qua A vẽ đường thẳng a//BC. Qua B vẽ đường thẳng b//AC và qua C vẽ đường thẳng c//AB. Các đường thẳng b và c cắt nhau tại A' và cắt đường thẳng a lần lượt tại C' và B'. Chứng minh rằng: ∆ABC và ∆A'B'C' có cùng một trọng tâm
Giải thích các bước giải:
a.Ta có xy//BC,MD//AB��//��,��//��
→AD//BM,AB//DM→ˆBMA=ˆMAD,ˆBAM=ˆAMD→��//��,��//��→���^=���^,���^=���^
Mà ΔABM,ΔMDAΔ���,Δ��� chung cạnh AM��
→ΔABM=ΔMDA(g.c.g)→Δ���=Δ���(�.�.�)
→AD=BM,MD=AB→��=��,��=��
Tương tự chứng minh được AE=MC,ME=AC��=��,��=��
→DE=DA+AE=BM+MC=BC→��=��+��=��+��=��
→ΔABC=ΔMDE(c.c.c)→Δ���=Δ���(�.�.�)
b.Gọi AM∩BD=I��∩��=�
→ˆIAD=ˆIMB,ˆIDA=ˆIBM(AD//BM)→���^=���^,���^=���^(��//��)
Mà AD=BM��=��
→ΔIAD=ΔIMB(g.c.g)→Δ���=Δ���(�.�.�)
→IA=IM,IB=ID→��=��,��=��
Lại có AE//CM→ˆEAI=ˆIMC��//��→���^=���^
Kết hợp AE=CM��=��
→ΔIAE=ΔIMC(c.g.c)→Δ���=Δ���(�.�.�)
→ˆAIE=ˆMIC→���^=���^
→ˆEIC=ˆAIE+ˆAIC=ˆMIC+ˆAIC=ˆAIM=180o→���^=���^+���^=���^+���^=���^=180�
→E,I,C→�,�,� thẳng hàng
→CE,AM,BD→��,��,�� đồng quy
Cho tam giác cân ABC, AB=AC. Trên cạnh BC lấy điểm D, trên tia đối của tia BC lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. Chứng minh rằng:
a, DM=EN
b, Đường thẳng BC cắt MN tại điểm I là trung điểm của MN
c, Đường thẳng vuông góc với MN tại I luôn luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
(VẼ HÌNH HỘ MK VỚI)
Cho tam giác ABC. Qua A vẽ đường thẳng xy // với BC. Từ điểm M trên cạnh BC vẽ các đường thẳng // với AB, AC và chúng cắt xy theo thứ tự tại D và E. Chứng minh rằng:
a) Tam giác ABC = Tam giác MDE
b) AM, BD, CE cùng đi qua một điểm
a) Có AD // BM (gt), DM // AB (gt) => DA = BM; DM = AB ( tính chất đoạn chắn) (1)
AE // CM (gt); AC // EM (gt) => AE = CM; AC = EM ( tính chất đoạn chắn) (2)
Từ (1) và (2) => AD + AE = BM + CM
=> DE = BC
Xét ΔABCΔABC và ΔMDEΔMDE có:
AB = DM (cmt)
BC = DE (cmt)
AC = EM (cmt)
Do đó, ΔABC=ΔΔABC=ΔMDE (c.c.c)
Cho tam giác ABC. Qua A vẽ đường thẳng xy ∥ BC. Lấy một điểm M bất kì trên cạnh BC, từ M
vẽ các đường thẳng song song với AB, AC, chúng cắt xy lần lượt tại D và E.
a,Chứng minh rằng a. △ABC = △MDE.
b. Ba đường thẳng AM, BD, CE cùng đi qua một điểm.
mình viết tay nhé
Cảm ơn bạn nha
Cho tam giác ABC vuông tại B có A = 60 độ. Vẽ đường phân giác AD (D thuộc BC). Qua D kẻ đường thẳng vuông góc với AC tại M và cắt đường thẳng AB tại N.
Chứng minh rằng: tam giác ABC đều và M là trung điểm của AC.
Xét ΔDAC có góc DAC=góc DCA
nên ΔDAC cân tại D
=>M là trung điểm của AC