Cho tam giác ABC nhọn (AB<AC), các đường cao AE và Bf cắt nhau tạo H. Gọi M là trung điểm của BC, qua H vẽ đường thẳng a vuông góc với HM, cắt AB,AC lần lượt tại I và K
a) Chứng minh tam giác ABC đồng dạng với tam giác EFC
b) Qua C kẻ đường thẳng b song song với đường thẳng IK, b cắt AH,AB lần lượt tại N và D. Chứng minh NC=ND và HI=HK
c) Gọi G là giao điểm của CH qua AB. Chứng minh \(\frac{AH}{HE}+\frac{BH}{HF}+\frac{CH}{HG}>6\)
cho tam giác ABC nhọn (AB < AC), các đường cao AE,BF cắt nhau tại H. gọi M là trung điểm của BC, qua H vẽ đường thẳngA vuông góc với HM, a cắt AB,AC lần lượt tại I ,K. Qua C kẻ đường thẳng b song song với đường thẳng IK, b cắt AH,AB theo thứ tự tại N và D. chứng minh NC=ND,HI=HK
Cho tam giác ABC có trung tuyến AM và trọng tâm G. Qua G vẽ Đường thẳng m cắt 2 cạnh AB, AC.
a/ Từ B và C vẽ các đường thẳng // AM, cắt m tại B' và C'. C/m BB'+CC'= AG
b/ Gọi D,E,F lần lượt là hình chiếu của A, B, C xuống m. C/m: BE+ CF=AD
Cho tam giác ABC vuông tại A. Gọi M.I theo thứ tự là trung điểm của cạnh BC,AC. Qua A và C lần lượt vẽ các đường thẳng song song với các cạnh BC và BA, chúng cắt nhau tại E. Hai đường thẳng AM và EC cắt nhau tại F. Hai đường thẳng MI và AE cắt nhau tại N. Chứng minh
a) E đối xứng với F qua AC
b) Tứ giác MNEF là hình thang cân
Cho tam giác ABC vuông tại A có AB = 6cm; Ac = 8cm và đường cao AH.
a)Chứng minh: Tam giác HBA đồng dạng với tam giác ABC
b)Tia phân giác của góc ABC cắt AC tại D và cắt AH tại E. Tính độ dài các đoạn thẳng BC, AH, EH
c)Qua E vẽ đường thẳng song song với AC cắt BC, AB lần lượt tại F và K. Tính độ dài đoạn thẳng AK và diện tích tứ giác AEFD
Bài 15.Cho tam giác ABC ,trung tuyến CM, Qua điểm Q trên AB vẽ đường thẳng d song song với CM, Đường thẳng d cắt BC tại R và cắt AC tại P. Chứng minh nếu QA.QB = QP.QR thì tam giác ABC vuông tại C
Bài 18. Cho 4 điểm A,E,F,B theothứ tự ấy trên 1 đường thẳng . Trên cùng 1 nửa mặt phẳng bờ AB vẽ các hình vuông ABCD ; FGHE. Gọi O là giao điểm của AG và BH. Chứng minh rằng các tam giác OHE và OBC đồng dạng . Chứng minh rằng các đường thẳng CE và FD cùng đi qua O.
Cho tam giác ABC và d là đường thẳng tùy ý qua B. Qua E là điểm bất kì trên AC, vẽ đường thẳng song song với AB và BC, lần lượt cắt d tại M và N. Gọi D là giao điểm của ME và BC. Đường thẳng NE cắt AB và MC lần lượt tại F và K. Chứng minh:
a) Δ A F N ∽ Δ M D C ; b) A N ∥ M K .
1.Cho tam giác ABC có ba đường trung tuyến AM, BN, CP. Đường thẳng qua A song song với BC cắt đường thẳng qua B song song với AM tại F; NP cắt cắt BF tại I; FN cắt AB tại K; FP cắt BN tại H, NJ//AM ( J thuộc BC). Chứng minh rằng các tứ giác AFPN, CNFP, NIBJ là các hình bình hành
2. Cho tam giác ABC, các đường cao AK và BD cắt nhau tại G. Vẽ các đường trung trực HE, HF của các cạnh AC, BC. Đường thẳng qua A song song với BG cắt đường thẳng qua B song song với AK tại I. Chứng minh
a) BG = AI
b) BG = 2HE
c) AG = 2HF
Cho tam giác ABC (AB=AC). Vẽ đường thẳng d đi qua A và song song với BC. Qua B vẽ đường thẳng song song với AB cắt d tại M, qua C vẽ đường thẳng song song với AB cắt d tại N.
a. Tứ giác BCNM là hình gì? Tại sao?
b. Gọi H, I, K lần luọt là trung điểm các cạnh MB, BC và CN. Chứng minh AHIK là hình thoi.
c. Biết AB=5cm, BC=6cm. Tính diện tích tứ giác AHIK