Xét ΔDAC có góc DAC=góc DCA
nên ΔDAC cân tại D
=>M là trung điểm của AC
Xét ΔDAC có góc DAC=góc DCA
nên ΔDAC cân tại D
=>M là trung điểm của AC
Cho tam giác ABC vuông tại B có Â = 60 độ . Gọi M là trung điểm của BC, qua M kẻ đường thẳng d vuông góc với đường thẳng phân giác của góc BAC tại N, d cắt AB và AC lần lượt tại E và F a. chứng minh rằng tam giác AEN = tam giác AFN b. tam giác AEF là tam giác gì ? vì sao c. so sánh độ dài 2 đoạn thẳng CM và CF
cho tam giác ABC vuông tại B ,có góc A =60 độ .vẽ đường phân giác AD ( D thuộc BC ) .Qua D dựng đường thẳng vuông góc với AC tại M và cắt AB tại N . gọi I là giao điểm của AD và BM . Chứng minh
a, tam giác BAD = tam giác MAD
b, AD là đường trung trực của đoạn thẳng BM
c, chứng minh điểm D cách đều ba đỉnh ba cạch của tam giác ACN
Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM ?
Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH bằng tam giác MBH, tam giác ACE= tam giác AKE?
Bài 3: Cho tam giác ABC vuông tại C có góc A = 60* và đường phân gác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K (K thuộc AB). Kẻ BD vuông góc với AE tại D (D thuộc AE). Chứng minh tam giác ACE = tam giác AKE
Bài 4: Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc BC tại H (H thuộc BC). Chứng minh tam giác ABE = tam giác HBE ?
Cho tam giác ABC vuông tại B có góc A = 60 độ vẽ đường phân giác AD qua D kẻ Đường Thẳng vuông góc vs AC tại M và cắt AB tại N. gọi I là giao của AD với BM
a) chúng minh tam giác BAD = tam giác MAD
b) AD là đường trung trực của BM
c) tam giác ANC đều
d) BI < ND
Cho tam giác ABC vuoong cân tại C. AD là đường phân giác cảu tam giác ABC( D thuộc BC ). Gọi I là trung điểm của đoạn AD. Đường thẳng qua I và vuông góc với Ad cắt cạnh AC tại M và cắt cạnh BC kéo dài tại N.
a) Chứng minh: tam giac AIN = tam giác DIN
b)Chứng minh: AD > BC
c) Kẻ CE vuông góc với AB( E thuộc AB) đường thẳng CE cắt AD tại K.
Chứng minh rằng: 3 điểm B, K, M thẳng hàng
Cho tam giác ABC có 120oBAC , đường phân giác trong của góc A cắt BC tại D. Từ
D kẻ DE vuông góc với AB, DF vuông góc với AC.
a) Chứng minh △ADE = △ADF;
b) Chứng minh rằng tam giác DEF là tam giác đều;
c) Qua điểm C vẽ đường thẳng song song với AD, nó cắt đường thẳng AB tại M. Chứng
minh rằng tam giác ACM là tam giác đều.
cho tam giác ABC vuông tại A có AB < AC . Gọi M là trung điểm của BC . Qua M kẻ đường thẳng vuông góc với BC cắt AC tại I . a) Chứng minh : tam giác IMB = tam giác IMC . b) Từ C kẻ đường thẳng vuông góc với BI cắt BI tại D . Chứng minh AB = DC và AC = DB . c) Biết góc BIC = 120 độ . Tính góc ABC
Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC