Cho a/b=c/d. Hay chung to:
\(\dfrac{2d-3c}{d}=\dfrac{2b-3a}{b}\)
Cho \(\dfrac{a}{b}\)= \(\dfrac{c}{d}\) . Chứng minh :
\(\dfrac{3a+2b}{3a-2b}=\dfrac{3c+2d}{3c-2d}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=b.k;b=d.k\)
Thay :
(1) : \(\dfrac{3a+2b}{3a-2b}=\dfrac{3bk+2b}{3bk-2b}=\dfrac{b.\left(3.k+2\right)}{b.\left(3.k-2\right)}=\dfrac{3.k+2}{3.k-2}\)
(2) : \(\dfrac{3c+2d}{3c-2d}=\dfrac{3dk+2d}{3dk-2d}=\dfrac{d.\left(3.k+2\right)}{d.\left(3.k-2\right)}=\dfrac{3.k+2}{3.k-2}\)
Do đó : \(\dfrac{3a+2b}{3a-2b}=\dfrac{3c+2d}{3c-2d}\)
Cho a+b+c+d ≠ 0 thỏa mãn:
\(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{b+a+d}=\dfrac{d}{c+b+a}\)
Tính P = \(\dfrac{2a+5b}{3c+4d}+\dfrac{2b+5c}{3d+4a}+\dfrac{2c+5d}{3a+4b}+\dfrac{2d+5a}{3c+4b}\)
Cho a+b+c+d ≠ 0 và \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{b+a+d}=\dfrac{d}{c+b+a}\)
Tính giá trị biểu thức:
P = \(\dfrac{2a+5b}{3c+4d}-\dfrac{2b+5c}{3d+4a}+\dfrac{2c+5d}{3a+4b}+\dfrac{2d+5a}{3c+4b}\)
Cho a, b, c, d > 0. CMR \(\dfrac{a}{b+2c+3d}+\dfrac{b}{c+2d+3a}+\dfrac{c}{d+2a+3b}+\dfrac{d}{a+2b+3c}\ge\dfrac{2}{3}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT=\dfrac{a}{b+2c+3d}+\dfrac{b}{c+2d+3a}+\dfrac{c}{d+2a+3b}+\dfrac{d}{a+2b+3c}\)
\(=\dfrac{a^2}{ab+2ac+3ad}+\dfrac{b^2}{bc+2bd+3ab}+\dfrac{c^2}{cd+2ac+3bc}+\dfrac{d^2}{ad+2bd+3cd}\)
\(\ge\dfrac{\left(a+b+c+d\right)^2}{4\left(ab+ad+bc+bd+ca+cd\right)}\ge\dfrac{\left(a+b+c+d\right)^2}{\dfrac{3}{2}\left(a+b+c+d\right)^2}=\dfrac{2}{3}\)
*Chứng minh \(4\left(ab+ad+bc+bd+ca+cd\right)\le\dfrac{3}{2}\left(a+b+c+d\right)^2\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(a-c\right)^2+\left(c-d\right)^2\ge0\)
Cho a+b+c+d khác 0 sao cho: \(\dfrac{b+c+d}{a}=\dfrac{a+c+d}{b}=\dfrac{b+a+d}{c}=\dfrac{c+b+a}{d}\)
Hãy tính: M = \(\dfrac{2a+5b}{3c+4d}-\dfrac{2b+5c}{3d+4a}-\dfrac{2c+5d}{3a+4b}+\dfrac{2d+5a}{3c+4b}\)
cho ti le thuc a/b = c/d ,chung to rang a,3a + 2b / a = 3c + 2d / c ; b, 2a - 3b/ b = 2c - 3d / b ; c, a/ a-2b = c/c-2d giup minh voi dang can gap
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{3a+2b}{a}=\dfrac{3bk+2b}{bk}=\dfrac{3k+2}{k}\)
\(\dfrac{3c+2d}{c}=\dfrac{3dk+2d}{dk}=\dfrac{3k+2}{k}\)
Do đó: \(\dfrac{3a+2b}{a}=\dfrac{3c+2d}{c}\)
b: \(\dfrac{2a-3b}{b}=\dfrac{2bk-3b}{b}=2k-3\)
\(\dfrac{2c-3d}{d}=\dfrac{2dk-3d}{d}=2k-3\)
Do đó: \(\dfrac{2a-3b}{b}=\dfrac{2c-3d}{d}\)
c: \(\dfrac{a}{a-2b}=\dfrac{bk}{bk-2b}=\dfrac{k}{k-2}\)
\(\dfrac{c}{c-2d}=\dfrac{dk}{dk-2d}=\dfrac{k}{k-2}\)
Do đó: \(\dfrac{a}{a-2b}=\dfrac{c}{c-2d}\)
Cho a,b,c,d>0.Tìm GTNN của
S=\(\left(1+\dfrac{2a}{3b}\right)\left(1+\dfrac{2b}{3c}\right)\left(1+\dfrac{2c}{3d}\right)\left(1+\dfrac{2d}{3a}\right)\)
\(S=\left(1+\dfrac{2a}{3b}\right)\left(1+\dfrac{2b}{3c}\right)\left(1+\dfrac{2c}{3d}\right)\left(1+\dfrac{2d}{3a}\right)\)
có \(1+\dfrac{2a}{3b}\ge2\sqrt{\dfrac{2a}{3b}}\)(BDT AM-GM)
\(=>1+\dfrac{2b}{3c}\ge2\sqrt{\dfrac{2b}{3c}}\)
\(=>1+\dfrac{2c}{3d}\ge2\sqrt{\dfrac{2c}{3d}}\)
\(=>1+\dfrac{2d}{3a}\ge2\sqrt{\dfrac{2d}{3a}}\)
\(=>S\ge16\sqrt{\dfrac{2a.2b.2c.2d}{3a.3b.3c.3d}}=16\sqrt{\dfrac{16abcd}{81abcd}}=16\sqrt{\dfrac{16}{81}}=\dfrac{64}{9}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh:
1) \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
2) \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)
3) \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
4) \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=bk;c=dk\)
1: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2\cdot bk+3\cdot dk}{2b+3d}=\dfrac{k\left(2b+3d\right)}{2b+3d}=k\)
\(\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k\left(2b-3d\right)}{2b-3d}=k\)
Do đó: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
2: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4\cdot bk-3b}{4\cdot dk-3d}=\dfrac{b\left(4k-3\right)}{d\left(4k-3\right)}=\dfrac{b}{d}\)
\(\dfrac{4a+3b}{4c+3d}=\dfrac{4bk+3b}{4dk+3d}=\dfrac{b\left(4k+3\right)}{d\left(4k+3\right)}=\dfrac{b}{d}\)
Do đó: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)
3: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)
\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)
Do đó: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
4: \(\dfrac{3a-7b}{b}=\dfrac{3bk-7b}{b}=\dfrac{b\left(3k-7\right)}{b}=3k-7\)
\(\dfrac{3c-7d}{d}=\dfrac{3dk-7d}{d}=\dfrac{d\left(3k-7\right)}{d}=3k-7\)
Do đó: \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) . Chứng minh :
a, \(\dfrac{a^3+b^3}{c^3+d^3} = \dfrac{a^3-b^3}{c^3-d^3}\)
b, \(\dfrac{(a+b)^3}{(c+d)^3}=\dfrac{a^3+b^3}{c^3+d^3}\)
c, \(\dfrac{(a-b)^3}{(c-d)^3}=\dfrac{3a^2+2b^2}{3c^2+2d^2}\)
d, \(\dfrac{4a^4+5b^4}{4c^4+5d^4}=\dfrac{a^2b^2}{c^2d^2}\)
e, \(\dfrac{a^{10}+b^{10}}{(a+b)^{10}} = \dfrac{c^{10}+d^{10}}{(c+d)^{10}}\)
a/
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{c^3}{d^3}\)
Áp dụng tỉ lệ thức ta có:
\(\frac{a^3}{b^3}=\frac{c^3}{d^3}\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^3}{c^3}=\frac{b^3}{d^3}=\frac{a^3+b^3}{c^3+d^3}=\frac{a^3-b^3}{c^3-d^3}\)
Vậy \(\frac{a^3+b^3}{c^3+d^3}=\frac{a^3-b^3}{c^3-d^3}\)