Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) . Chứng minh :
a, \(\dfrac{a^3+b^3}{c^3+d^3} = \dfrac{a^3-b^3}{c^3-d^3}\)
b, \(\dfrac{(a+b)^3}{(c+d)^3}=\dfrac{a^3+b^3}{c^3+d^3}\)
c, \(\dfrac{(a-b)^3}{(c-d)^3}=\dfrac{3a^2+2b^2}{3c^2+2d^2}\)
d, \(\dfrac{4a^4+5b^4}{4c^4+5d^4}=\dfrac{a^2b^2}{c^2d^2}\)
e, \(\dfrac{a^{10}+b^{10}}{(a+b)^{10}} = \dfrac{c^{10}+d^{10}}{(c+d)^{10}}\)
a/
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{c^3}{d^3}\)
Áp dụng tỉ lệ thức ta có:
\(\frac{a^3}{b^3}=\frac{c^3}{d^3}\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^3}{c^3}=\frac{b^3}{d^3}=\frac{a^3+b^3}{c^3+d^3}=\frac{a^3-b^3}{c^3-d^3}\)
Vậy \(\frac{a^3+b^3}{c^3+d^3}=\frac{a^3-b^3}{c^3-d^3}\)