a) Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) (\(a,b,c,d\ne0\)). Chứng minh rằng:
1) \(\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)
2) \(\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}\)
3) \(\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{\left(a+b\right)^3}{\left(c+d\right)^3}\) \(\left(\dfrac{a}{b}=\dfrac{c}{d}\ne1\right)\)
b)Cho \(\dfrac{2a+13b}{3a-7b}=\dfrac{2c+13d}{3c-7d}\). Chứng minh rằng:\(\dfrac{a}{b}=\dfrac{c}{d}\)
c)Cho \(\dfrac{cy-bz}{x}=\dfrac{az-cx}{y}=\dfrac{bx-ay}{z}\). Chứng minh rằng: \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
Bài 1:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)
Khi đó: \(\left\{\begin{matrix} \frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b(2k+5)}{b(3k-4)}=\frac{2k+5}{3k-4}\\ \frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d(2k+5)}{d(3k-4)}=\frac{2k+5}{3k-4}\end{matrix}\right.\)
\(\Rightarrow \frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)
Ta có đpcm.
Bài 2:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)
Khi đó: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}\)
Do đó: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}(=\frac{b^2}{d^2})\) . Ta có đpcm.
Bài 3:
a) Sửa điều kiện: \(\frac{a}{b}=\frac{c}{d}\neq -1\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)
Theo đkđb thì \(k\neq -1\) nên \(k^3+1\neq 0\); \(k+1\neq 0\)
Ta có: \(\frac{a^3+b^3}{c^3+d^3}=\frac{(bk)^3+b^3}{(dk)^3+d^3}=\frac{b^3(k^3+1)}{d^3(k^3+1)}=\frac{b^3}{d^3}\)
\(\frac{(a+b)^3}{(c+d)^3}=\frac{(bk+b)^3}{(dk+d)^3}=\frac{b^3(k+1)^3}{d^3(k+1)^3}=\frac{b^3}{d^3}\)
\(\Rightarrow \frac{a^3+b^3}{c^3+d^3}=\frac{(a+b)^3}{(c+d)^3}\) (đpcm)
b)
Đặt \(\frac{a}{b}=k; \frac{c}{d}=t\Rightarrow a=bk; c=dt\)
Ta cần cm \(k=t\)
Khi đó:
\(\frac{2a+13b}{3a-7b}=\frac{2bk+13b}{3bk-7b}=\frac{b(2k+13)}{b(3k-7)}=\frac{2k+13}{3k-7}\)
\(\frac{2c+13d}{3c-7d}=\frac{2dt+13d}{3dt-7d}=\frac{d(2t+13)}{d(3t-7)}=\frac{2t+13}{3t-7}\)
Vì \(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\Rightarrow \frac{2k+13}{3k-7}=\frac{2t+13}{3t-7}\)
\(\Rightarrow (2k+13)(3t-7)=(2t+13)(3k-7)\)
\(-14k+39t=-14t+39k\Rightarrow k=t\)
Ta có đpcm.
Bài 3c:
Ta có:
\(\frac{cy-bz}{x}=\frac{az-cx}{y}=\frac{bx-ay}{z}\)
\(= \frac{xcy-xbz}{x^2}=\frac{yaz-ycx}{y^2}=\frac{zbx-zay}{z^2}\)
\(=\frac{xcy-xbz+yaz-ycx+zbx-zay}{x^2+y^2+z^2}=\frac{0}{x^2+y^2+z^2}=0\) (áp dụng tính chất dãy tỉ số bằng nhau)
\(\Rightarrow \left\{\begin{matrix} cy-bz=0\\ az-cx=0\\ bx-ay=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} \frac{c}{z}=\frac{b}{y}\\ \frac{a}{x}=\frac{c}{z}\\ \frac{a}{x}=\frac{b}{y}\end{matrix}\right.\Rightarrow \frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Ta có đpcm.