x3+6x2-13x-42
Trong các khai triển dưới đây, khai triển nào là đúng?
A. (x-2)3 = x3 - 6x2 +12x-8
B. (x-2)3 = x3 - 2x2 + 4x -8
C. (x-2)3 = 3x3 - 6x2 + 12x -24
D. (x-2)3 = x3 - 6x2 + 12x + 8
A. (x-2)3 = x3 - 6x2 +12x - 8 (hằng đẳng thức)
Làm tính chia: 6 x 2 + 13 x - 5 : 2 x + 5
Phân tích đa thức thành nhân tử : 6x2 – 13x + 6
\(6x^2-13x+6\)
\(=6x^2-9x-4x+6\)
\(=\left(2x-3\right)\left(3x-2\right)\)
Giải các phương trình sau: 13 x - 3 2 x + 7 + 1 2 x + 7 = 6 x 2 - 9
13 x - 3 2 x + 7 + 1 2 x + 7 = 6 x 2 - 9 Đ K X Đ : x ≠ ± 3 v à x ≠ - 7 2 ⇔ 13 x + 3 x 2 - 9 2 x + 7 + x 2 - 9 2 x + 7 x 2 - 9 = 6 2 x + 7 x 2 - 9 2 x + 7
⇔ 13(x + 3) + x 2 – 9 = 6(2x + 7)
⇔ 13x + 39 + x 2 – 9 = 12x + 42
⇔ x 2 + x – 12 = 0
⇔ x 2 – 3x + 4x – 12 = 0
⇔ x(x – 3) + 4(x – 3) = 0
⇔ (x + 4)(x – 3) = 0
⇔ x + 4 = 0 hoặc x – 3 = 0
x + 4 = 0 ⇔ x = -4 (thỏa mãn)
x – 3 = 0 ⇔ x = 3 (loại)
Vậy phương trình có nghiệm x = -4.
tìm x biết
d) 6x2 + 13x + 3 = 0
Δ=13^2-4*6*3
=169-72=97>0
=>Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x=\dfrac{-13-\sqrt{47}}{12}\\x=\dfrac{-13+\sqrt{47}}{12}\end{matrix}\right.\)
Viết các biểu thức sau dưới dạng lập phương của tổng (hiệu).
a) x3-6x2+12x-8 b) 8-12x+6x2-x3
c)x3+x2+\(\dfrac{1}{3}\)x+\(\dfrac{1}{27}\) d) \(\dfrac{x^3}{8}\)+\(\dfrac{3}{4}\)x2y+\(\dfrac{3}{2}\)xy2+y3 e) (x-1)3-15.(x-1)2+75.(x-1)-125
a)
=(x-2)3
b)\(\left(2-x\right)^3\)
c)\(\left(x+\dfrac{1}{3}\right)^3\)
d)\(\left(\dfrac{x}{2}+y\right)^3\)
e)
\(=\left(x-1\right)^2\left(x-1-15\right)+25\left[3\left(x-1\right)-5\right]\)
\(=\left(x-1\right)^2\left(x-16\right)+25\left(3x-3-5\right)\)
\(=\left(x-1\right)^2\left(x-16\right)+25\left(3x-8\right)\)
Cho đồ thị hàm số y = x 3 - 6 x 2 + 9 x - 2 như hình vẽ
Khi đó phương trình | x 3 - 6 x 2 + 9 x - 2 | = m (m là tham số ) có 6 nghiệm phân biệt khi và chỉ khi
A. -2≤m≤2
B. 0<m<2
C. 0≤m≤2
D. -2<m<2
Chọn B
+ Đồ thị hàm số y = | x 3 - 6 x 2 + 9 x - 2 | có được bằng cách biến đổi đồ thị (C) hàm số y = x 3 - 6 x 2 + 9 x - 2
Giữ nguyên phần đồ thị (C) nằm trên trục hoành.
Lấy đồi xứng phần đồ thị của (C) phần dưới trục hoành qua trục hoành.
Xóa phần đồ thị còn lại (C) phía dưới trục hoành.
+ Số nghiệm của phương trình | x 3 - 6 x 2 + 9 x - 2 | = m là số giao điểm của đồ thị hàm số
y = | x 3 - 6 x 2 + 9 x - 2 | và đồ thị hàm số y=m. Để phương trình có 6 nghiệm phân biệt thì điều kiện cần và đủ là 0<m<2.
Phân tích đa thức thành nhân tử:
a) 3x2 - 6xy.
b) x3 - 6x2 + 9x.
c) x2 - 2xy - 3y + 6y.
d) 6x2 - 19x + 15.
a) \(3x^2-6xy=3x\left(x-2y\right)\)
b) \(x^3-6x^2+9x=x\left(x^2-6x+9\right)=x\left(x-3\right)^2\)
c) \(=x\left(x-2y\right)-3\left(x-2y\right)=\left(x-2y\right)\left(x-3\right)\)
d) \(=2x\left(3x-5\right)-3\left(3x-5\right)=\left(3x-5\right)\left(2x-3\right)\)
\(a,=3x\left(x-2y\right)\\ b,=x\left(x-3\right)^2\\ c,Sửa:x^2-2xy-3x+6y=x\left(x-2y\right)-3\left(x-2y\right)=\left(x-2y\right)\left(x-3\right)\\ d,=\left(3x-5\right)\left(2x-3\right)\)
a, `3x^2-6xy=3x(x-2y)`
b, `x^3-6x^2+9x=x(x^2-6x+9)=x(x-3)^2`
c, `x^2-2xy-3y+6y=x^2-2xy+3y`
d, `6x^2-19x+15=6x^2-9x-10x+15=3x(2x-3)-5(2x-3)=(3x-5)(2x-3)`
x3-6x2+5x=0
\(x^3-6x^2+5x=0\Leftrightarrow x\left(x^2-6x+5\right)=0\)
\(\Leftrightarrow x\left(x^2-x-5x+5\right)=0\)
\(\Leftrightarrow x\left[x\left(x-1\right)-5\left(x-1\right)\right]=0\Leftrightarrow x\left(x-1\right)\left(x-5\right)=0\Leftrightarrow x=0;x=1;x=5\)
\(x^3-6x^2+5x=0\)
\(\Leftrightarrow x.\left(x^2-6x+5\right)=0\)
\(\Leftrightarrow x.\left(x^2-x-5x+5\right)=0\)
\(\Leftrightarrow x.\left[\left(x^2-x\right)-\left(5x-5\right)\right]=0\)
\(\Leftrightarrow x.\left[x\left(x-1\right)-5\left(x-1\right)\right]=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x-5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=5\end{matrix}\right.\)
Vậy \(x\in\left\{0;1;5\right\}\)
Cho hàm số y = - x 3 + 6 x 2 - 9 x + 4 là bảng biến thiên như hình bên dưới
Các giá trị của tham số m sao cho phương trình - x 3 + 6 x 2 - 9 x - m = 0 có ba nghiệm phân biệt là
A. -3 < m < 1
B. 0 < m < 4
C. -4 < m < 0
D. 1 < m < 3