Cho tam giác PQR vuông tại P có đường cao PH=4cm và\(\dfrac{QH}{HR}=\dfrac{1}{2}\) .Tính chu vi tam giác
Cho tam giác PQR vuông tại P có đg cao PH=4cm và \(\dfrac{QH}{HR}=\dfrac{1}{2}\) khi đó độ dài QR bằng?
\(\dfrac{QH}{HR}=\dfrac{1}{2}\Rightarrow HR=2QH\)
Xét tam giác PQR vuông tại P có PH là đường cao ta có:
\(PH^2=HR\cdot QH\)
\(\Rightarrow4^2=2QH\cdot QH\)
\(\Rightarrow16=2QH^2\)
\(\Rightarrow QH^2=8\)
\(\Rightarrow QH=2\sqrt{2}\left(cm\right)\)
\(\Rightarrow HR=2\cdot2\sqrt{2}=4\sqrt{2}\left(cm\right)\)
\(\Rightarrow QR=4\sqrt{2}+2\sqrt{2}=6\sqrt{2}\left(cm\right)\)
Câu1. Cho tam giác MPQ vuông tại P, đường cao PH thì hệ thức nào sau đây đúng:
A. PM2 = QH. MQ
B. PH2 = MH. PQ
C. HQ =\(\dfrac{PQ^2}{MQ}\)
D\(\dfrac{1}{MP^2}=\dfrac{1}{PH^2}+\dfrac{1}{PQ^2}\)
Câu2. Cho tam giác ABC vuông tại A. Hệ thức nào sau đây sai:
A. sinC = \(\dfrac{BC}{BA}\) B. cosB = \(\dfrac{AB}{BC}\) C. tanC = \(\dfrac{AB}{AC}\) D. cotB =\(\dfrac{AB}{AC}\)
Câu3. Cho tam giác ABC vuông tại C, hệ thức nào sau đây là đúng
A. sinA = cosC B. sinB = cosC C. sin2A + cos2B = 1 D. tanA = cotB
Câu 4. Tam giác ABC vuông tại A, có AH là đường cao thì:
A.\(AH=\sqrt{HB.BC}\)
B. \(HB=\dfrac{AB^2}{BC}\)
C. \(AB=\sqrt{BC.HC}\)
D.\(AC=\sqrt{BC.HB}\)
Tam giác ABC vuông tại A có đường cao AH= 4cm và \(\dfrac{BH}{HC}=\dfrac{1}{2}\) . Tính BC
Ta có: \(\dfrac{BH}{HC}=\dfrac{1}{2}\)
nên HC=2HB
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền AB, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB\cdot2HB=4^2=16\)
\(\Leftrightarrow HB^2=8\)
hay \(HB=2\sqrt{2}\left(cm\right)\)
\(\Leftrightarrow HC=2\cdot HB=2\cdot2\sqrt{2}=4\sqrt{2}\left(cm\right)\)
\(\Leftrightarrow HB+HC=2\sqrt{2}+4\sqrt{2}\)
hay \(BC=6\sqrt{2}\left(cm\right)\)
Cho tam giác ABC vuông tại A. Biết \(\dfrac{AB}{AC}\)=\(\dfrac{4}{3}\), đường cao AH=3,6 cm. Tính chu vi tam giác ABC
Có:
\(\dfrac{AB}{AC}=\dfrac{4}{3}=\dfrac{4k}{3k}\) (k là số bất kì)
\(\Rightarrow AB=4k,AC=3k\)
Áp dụng đl pytago vào tam giác ABC được:
\(BC^2=AB^2+AC^2=\left(4k\right)^2+\left(3k\right)^2=16k^2+9k^2=25k^2=\left(5k\right)^2\\ \Rightarrow BC=5k\left(cm\right)\)
Theo hệ thức lượng, có:
\(AH.BC=AB.AC\\ \Leftrightarrow3,6.5k=4k.3k\\ \Leftrightarrow18=12k\\ \Rightarrow k=\dfrac{18}{12}=\dfrac{3}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}AB=4k=4.\dfrac{3}{2}=6\left(cm\right)\\AC=3k=3.\dfrac{3}{2}=\dfrac{9}{2}=4,5\left(cm\right)\\BC=5k=5.\dfrac{3}{2}=\dfrac{15}{2}=7,5\left(cm\right)\end{matrix}\right.\)
\(\Rightarrow P_{ABC}=AB+AC+BC=6+4,5+7,5=18\left(cm\right)\)
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 3cm, AC = 4cm. Tính độ dài đường cao AH, tính c o s A C B ^ và chu vi tam giác ABH.
A. AH = 2,8 cm; c o s A C B ^ = 3 5
B. AH = 2,4 cm; c o s A C B ^ = 4 5
C. AH = 2,5 cm; c o s A C B ^ = 3 4
D. AH = 1,8 cm; c o s A C B ^ = 2 3
Áp dụng định lý Pytago trong ∆ ABC vuông tại A ta có:
Áp dụng hệ thức lượng trong ∆ ABC vuông tại A có đường cao AH ta có:
Đáp án cần chọn là: B
Cho tam giác ABC vuông tại A , có AB=3cm , AC=4cm , đường cao AH (H\(\in\)BC )
1)Tính BC ,AH
b) Kẻ đường phân giác AI của góc BAC (I\(\in\)BC) .Tính BI , CI
c) Chứng minh : \(\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{\sqrt{2}}{AI}\)
1: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=5(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
hay AH=2,4(cm)
Cho tam giác ABC vuông tại A, có đường cao AH. Biết AB = 4cm, BH =\(\dfrac{9}{5}\)
. Tính độ dài đường phân giác AD.
Bài này tính toán được bình thường dù phân giác AD
Nhưng kết quả vô cùng xấu, bạn kiểm tra lại số liệu
(Hệ thức lượng \(AB^2=BH.BC\) tính được \(BC=\dfrac{80}{9}\), sau đó Pitago tính AC thì nhận được 1 kết quả vô cùng xấu, dẫn tới việc sử dụng định lý phân giác \(\dfrac{BD}{AB}=\dfrac{DC}{AC}\) để tính toán BD, DC sẽ cho 1 kết quả xấu còn kinh khủng hơn)
cho tam giác ABC vuông tại A, đường cao AH. Biết AH=14cm, BH/Ch=1/4. Tính chu vi tam giác
Cho tam giác ABC vuông tại A, đường cao AH. AH = 5cm, BH = 4cm. Tính chu vi tam giác ABC ?
Áp dụng định lý Pitago:
\(AB=\sqrt{AH^2+BH^2}=\sqrt{41}\)
Áp dụng hệ thức lượng:
\(AB^2=BH.BC\Rightarrow BC=\dfrac{AB^2}{BH}=\dfrac{41}{4}\)
Áp dụng Pitago:
\(AC=\sqrt{BC^2-AB^2}=\dfrac{5\sqrt{41}}{4}\)
Chu vi: \(AB+AC+BC=\dfrac{41+9\sqrt{41}}{4}\left(cm\right)\)