Chứng minh rằng \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\forall x,y\in Q\) \(\in Q\)
Cho \(x,y\in Q\). Chứng minh \(\left|x-y\right|\ge\left|x\right|-\left|y\right|\)
\(\left|x\right|=\left|\left(x-y\right)+y\right|\le\left|x-y\right|+\left|y\right|\\ \Rightarrow\left|x\right|-\left|y\right|\le\left|x-y\right|\)
Dấu \("="\Leftrightarrow xy\ge0\)
\(\left|x-y\right|\ge\left|x\right|-\left|y\right|\)
⇒ \(\left(\left|x-y\right|\right)^2\ge\left(\left|x\right|-\left|y\right|\right)^2\)
⇒ \(\left(x-y\right)^2\ge x^2+2\left|xy\right|-y^2\)
⇒ \(x^2-2xy-y^2\ge x^2-2\left|xy\right|-y^2\)
⇒ 2xy \(\ge\) \(2\left|xy\right|\)
Kết luận: ...
Chúc bạn học tốt!!
Tìm hàm f: \(R\rightarrow R\) thỏa mãn điều kiện
1. \(f\left(x^2+f\left(y\right)\right)=y+x.f\left(x\right),\forall x,y\in R\)
2. \(f\left(\left(x+1\right).f\left(y\right)\right)=f\left(y\right)+y.f\left(x\right),\forall x,y\in R\)
3. \(f\left(x^3+f\left(y\right)\right)=x^2f\left(x\right)+y,\forall x,y\in R\)
4. \(\hept{\begin{cases}f\left(x+y\right)=f\left(x\right)+f\left(y\right)\\f\left(xy\right)=f\left(x\right).f\left(y\right)\end{cases}},\forall x,y\in R\)
@Lê Minh Đức
@alibaba nguyễn : Giúp với ông ei :) Chắc ông cũng học đến cái này r :))
Hãy chứng min rằng :
1) \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2},\forall a,b,c,d\in R\)
2) \(\sqrt{4\cos^2x.\cos^2y+\sin^2\left(x-y\right)}+\sqrt{4\sin^2x.\sin^2y+\sin^2\left(x-y\right)}\ge2,\forall x,y\in R\)
1) Bất đẳng thức cần chứng minh
\(\Leftrightarrow\) a2 + b2 + c2 + d2 + \(2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge\left(a+c\right)^2+\left(b+d\right)^2\)
\(\Leftrightarrow\) \(ac+bd\le\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\left(1\right)\)
Nếu : ac + bd < 0 : BĐT luôn đúng
Nếu : ac + bd \(\ge\) 0 : Thì (1) tương đương
( ac + bd )2 \(\le\) ( a2 + b2 )( c2 + d2 )
\(\Leftrightarrow\) \(\left(ac\right)^2+\left(bd\right)^2+2abcd\le\left(ac\right)^2+\left(ad\right)^2+\left(bc\right)^2+\left(bd\right)^2\)
\(\Leftrightarrow\) \(\left(ad\right)^2+\left(bc\right)^2-2abcd\ge0\)
\(\Leftrightarrow\) \(\left(ad-bc\right)^2\ge0\) , luôn đúng , vậy bài toán được chứng minh
2) Chọn :\(\left\{{}\begin{matrix}a=2\cos x.\cos y\\c=2\sin x.\sin y\\b=d=\sin\left(x-y\right)\end{matrix}\right.\)
Từ câu 1) ta có :
\(\sqrt{4\cos^2x.\cos^2y+\sin^2\left(x-y\right)}+\sqrt{4\sin^2x.\sin^2y+\sin^2\left(x-y\right)}\)
\(\ge\sqrt{\left(2\cos x.\cos y+2\sin x.\sin y\right)^2+\left(2\sin\left(x-y\right)\right)^2}\)
\(\ge\sqrt{4\cos^2\left(x-y\right)+4\sin^2\left(x-y\right)}=2\)
Cho các số x,y,z là các số phức phân biệt sao cho \(y=tx+\left(1-t\right)z,t\in\left(0,1\right)\)
Chứng minh rằng :
\(\frac{\left|z\right|-\left|y\right|}{\left|z-y\right|}\ge\frac{\left|z\right|-\left|x\right|}{\left|z-x\right|}\ge\frac{\left|y\right|-\left|x\right|}{\left|y-x\right|}\)
Từ hệ thức :
\(y=tx+\left(1-t\right)z\)
Bất đẳng thức
\(\frac{\left|z\right|-\left|y\right|}{\left|z-y\right|}\ge\frac{\left|z\right|-\left|x\right|}{\left|z-x\right|}\)
Trở thành :
\(\left|z\right|-\left|y\right|\ge t\left(\left|z\right|-\left|x\right|\right)\)
hay
\(\left|y\right|\le\left(1-t\right)\left|z\right|+t\left|x\right|\)
Vận dụng bất đẳng thức tam giác cho
\(y=\left(1-t\right)x+tx\) ta có kết quả
Bất đẳng thức thứ hai, được chứng minh tương tự bởi
\(y=tx+\left(1-t\right)z\)
tương đương với :
\(y-x=\left(1-t\right)\left(z-x\right)\)
Cho \(x,y\in Q\). Chứng tỏ rằng:
a) \(|x+y|\le\left|x\right|+\left|y\right|\)
b) \(\left|x-y\right|\ge\left|x\right|-\left|y\right|\)
Cho x, y \(\in\) Q, chứng tỏ rằng:
a) \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
b) \(\left|x-y\right|\ge\left|x\right|-\left|y\right|\)
a, Vì hai vế đều ko âm nên ta đuợc :
\(\left|x+y\right|^2\)<=\(\left(\left|x\right|^2+\left|y\right|^2\right)\)
<=> (x+y)(x+y) <= \(\left(\left|x\right|+\left|y\right|\right)\left(\left|x\right|+\left|y\right|\right)\)
<=> \(x^2+2xy+y^2\) <= \(x^2+2\left|x\right|\left|y\right|+y^2\)
<=> xy <= |xy| ( Luôn đúng với mọi x và y )
Vậy BĐT trên đúng. Dấu ' = ' xảy ra khi x, y cùng dấu
b, Áp dụng từ câu a , bạn suy ra nhé !
a) cả 2 vế không âm nên bình phương 2 vế ta được :
\(\left|x+y\right|^2\le\left(\left|x\right|+\left|y\right|\right)^2\)
\(\Leftrightarrow\left(x+y\right)\left(x+y\right)\le\left(\left|x\right|+\left|y\right|\right).\left(\left|x\right|+\left|y\right|\right)\)
\(\Leftrightarrow x^2+2xy+y^2\le x^2+2.\left|x\right|\left|y\right|+y^2\)
\(\Leftrightarrow xy\le\left|xy\right|\) Điều này luôn đúng với mọi số x ; y .
Vậy bất đẳng thức đã cho đúng . Dầu " ="khí | xý | = xy <=> x ; y cùng dấu .
b) Áp dụng câu a) ta có : | x - y| + |y| \(\ge\) | (x-y) + y | = |x|
=> |x - y | \(\ge\)|x| + | y|
Đầu " = " xảy ra <=> (x-y) và y cùng dấu
a) Với mọi x, y \(\in\) Q ta luôn có x \(\le\) \(\left|x\right|\) và -x \(\le\) \(\left|x\right|\);
y \(\le\) \(\left|y\right|\) và -y \(\le\) \(\left|y\right|\) \(\Rightarrow\) x + y \(\le\) \(\left|x\right|\) + \(\left|y\right|\) và -x - y \(\le\) \(\left|x\right|\) - \(\left|y\right|\)
hay x + y \(\ge\) -( \(\left|x\right|\) + \(\left|y\right|\) ).
Do đó -( \(\left|x\right|\) + \(\left|y\right|\) ) \(\le\) x + y \(\le\) \(\left|x\right|\) + \(\left|y\right|\) .
Vậy \(\left|x+y\right|\le\left|x\right|+\left|y\right|.\)
(Dấu "=" xảy ra khi xy \(\ge\) 0).
b) Theo câu a ta có:\(\left|x-y\right|+\left|y\right|\ge\left|x-y+y\right|=\left|x\right|\Rightarrow\left|x-y\right|\ge\left|x\right|-\left|y\right|.\)
chứng minh rằng :
a, x+2y+\(\dfrac{25}{x}\)+\(\dfrac{27}{y^2}\)\(\ge\) 19 ( \(\forall\)x,y \(\)> 0 )
b, \(x+\dfrac{1}{\left(x-y\right)y}\ge3\) ( \(\forall\)x>y>0 )
c,\(\dfrac{x}{2}+\dfrac{16}{x-2}\ge13\left(\forall x>2\right)\)
d, \(a+\dfrac{1}{a^2}\ge\dfrac{9}{4}\left(\forall x\ge2\right)\)
e, a+\(\dfrac{1}{a\left(a-b\right)^2}\ge2\sqrt{2}\) ( \(\forall x>y\ge0\))
f, \(\dfrac{2a^3+1}{4b\left(a-b\right)}\ge3[\forall a\ge\dfrac{1}{2};\dfrac{a}{b}>1]\)
g, x+\(\dfrac{4}{\left(x-y\right)\left(y+1\right)^2}\ge3\left(\forall x>y\ge0\right)\)
h, \(2a^4+\dfrac{1}{1+a^2}\ge3a^2-1\)
Cho \(x,y\in Q\). Chứng tỏ rằng:
a,\(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
b,\(\left|x-y\right|\ge\left|x\right|-\left|y\right|\)
cho x,y \(\in\) Q. chứng tỏ rằng:
a) \(\left|x+y\right|\) \(\le\) \(\left|x\right|+\left|y\right|\)
b) \(\left|x-y\right|\ge\left|x\right|-\left|y\right|\)
a) |x| + |y| \(\ge\) |x+y|
Với mọi x,y : |x| \(\ge\) x ( Dấu "=" xảy ra khi x \(\ge\) 0 )
|y| \(\ge\) y ( Dấu "=" xảy ra khi y \(\ge\) 0 )
=> |x| + |y| \(\ge\) x+y (1)
Với mọi x,y : |x| > x ( Dấu "=" xảy ra khi x \(\le\) 0 )
|y| > y ( Dấu "=" xảy ra khi y \(\le\) 0 )
=> |x| + |y| = -(x+y) (2)
Từ (1) và (2) => |x| + |y| \(\ge\) |x+y|
Cho \(\left|a\right|\ge\left|b\right|\), ta có: \(\dfrac{\left|a\right|}{2009+\left|a\right|}\ge\dfrac{\left|b\right|}{2009+\left|b\right|}\)
Chứng minh rằng: \(\dfrac{\left|x\right|}{2009+\left|x\right|}+\dfrac{\left|y\right|}{2009+\left|y\right|}\ge\dfrac{\left|x-y\right|}{2009+\left|x-y\right|}\)với các số x,y bất kỳ