CMR với mọi số hữu tỉ x;y thì:
a)\(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
b) \(\left|x-y\right|\ge\left|x\right|+\left|y\right|\)
Giả sử\(x=\dfrac{a}{m},y=\dfrac{b}{m}\left(a;b;m\in Z,m>0\right)\) và x < y. Hãy chứng tỏ rằng nếu chọn z=\(\dfrac{a+b}{2m}\) thì ta có x < z <y
Giả sử \(x=\dfrac{a}{m};y=\dfrac{b}{m}\left(a,b,m\in Z,m>0\right)\) và \(x< y\).
Hãy chứng tỏ rằng nếu chọn \(z=\dfrac{a+b}{2m}\) thì ta có \(x< z< y\).
Giả sử \(x=\dfrac{a}{m},y=\dfrac{b}{m}\left(a,b,m\in Z,m\ne0\right)\) và x < y . Hãy chứng tỏ rằng nếu chọn \(z=\dfrac{a+b}{2m}\) thì ta có x < z < y.
Hướng dẫn : Sử dụng tính chất : Nếu \(a,b,c\in Z\) và a < b thì a + c < b + c .
Tìm \(x;y;z\in Q\) biết:
a) \(x-y=2\left(x+y\right)=x:y\)
b) \(x+y=x\cdot y=x:y\)
c) \(x+y=\frac{7}{12};y+z=\frac{-19}{24};z+x=\frac{1}{8}\)
Tìm GTNN của biểu thức:
a) \(\left|x+5\right|+\left|x+17\right|\)
b) \(\left|x+8\right|+\left|x+13\right|+\left|x+50\right|\)
c) \(\left|x+5\right|+\left|x+2\right|+\left|x-7\right|+\left|x-8\right|\)
d) \(\left|x+3\right|+\left|x-2\right|+\left|x-5\right|\)
1.Tìm x :
a,\(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x\left(x+1\right)}=\frac{13}{90}\)
b,\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{49}{148}\)
c,\(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}\)\(+\frac{1}{\left(x+21\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
d,\(\frac{3}{\left(x-4\right)\left(x-7\right)}+\frac{6}{\left(x-7\right)\left(x-13\right)}\)\(+\frac{15}{\left(x-13\right)\left(x-28\right)}\)\(-\frac{1}{x-38}=\frac{-1}{20}\)
Tìm GTNN của biểu thức:
a)x2 + 3.\(\left|y-2\right|\)-1
b)x + \(\left|x\right|\)
Cho \(A=\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3+...+\left(-7\right)^{2007}\)
Chứng minh rằng : \(A⋮43\)