Bài 3. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Chứng minh rằng AM=1/2BC
Bài 3. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Chứng minh rằng AM=1/2BC
áp dụng tính chất đường trung tuyến của tam giác vuông
=> AN=1/2BC
Cho tam giác ABC,gọi M là trung điểm của BC.Chứng minh rằng nếu AM=1/2BC thì tam giác ABC vuông tại A
BÀI 1: Cho tam giác ABC có AB=AC.Tia phân giác của BÂC cắt BC tại điểm M.
a/Chứng minh rằng hình tam giác AMb= tam giác AMC và M là trung điểm của BC.
b/Tính góc AMB.
c/Vẽ ME // AB(E thuộc AC).Chứng minh rằng:góc EMC=góc ECM
d/Trên canh AB lấy điểm K sao cho AK =AE.Chứng minh rằng :KE//BC
BÀI 2:Cho tam giác ABC vuông tại A có M là trung điểm của BC
a)Tính góc B +góc C
b)Chọn điểm D sao cho M là trung điểm của AD.Chứng minh :tam giác AMB= tam giác DMC
c)Chứng minh ACvuoong góc CD
d)Chứng minh :AM=1/2BC
Bài 4. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của cạnh BC. Trên tia AM lấy
điểm N sao cho M là trung điểm của AN.
a) Chứng minh rằng: CN = AB và CN // AB;
b) Kẻ BE ⊥ AM tại E, CF ⊥ AM tại F. Chứng minh BE = CF.
c) Chứng minh BF // CE
d) Chứng minh rằng: BC = 2AM.
Bài 1 : Cho tam giác ABC vuông tại A có AB < AC. Gọi M là trung điểm của BC, kẻ
MD vuông góc với AB tại D, ME vuông góc với AC tại E.
a) Chứng minh AM = DE
b) Chứng minh tứ giác DMCE là hình bình hành
c)Gọi AH là đường cao của tam giác ABC ( H thuộc BC) chứng minh tứ giác
DHME là hình thang cân và điểm A đối xứng với H qua DE.
Bài 2: Cho hinh chữ nhật ABCD, kẻ AN và CM cùng vuông góc với BD (M, N thuộc
BD) a)Chứng minh tứ giác ANCM là hình bình hành
b) Gọi K là điểm đối xứng với A qua N. Chứng minh MNKC là hình chữ nhật
c )Tứ giác DKCB là hình gì? Vì sao?
d) Tia AM cắt KC tại P. Chứng minh các đường thẳng KB, PN, CM đồng quy
Bài 1:
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
Do đó: ADME là hình chữ nhật
Suy ra: AM=DE
b: Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
D là trung điểm của AB
Do đó: MD là đường trung bình
=>MD//CE và MD=CE
hayDMCE là hình bình hành
Cho tam giác ABC nhọn dựng phía ngoài tam giác 2 tam giác vuông cân tại A là tam giác ABD và tam giác ACE gọi M là trung điểm của DE chứng minh rằng
a) AM vuông góc với BC và AM=1/2 BC
b) Gọi P là trung điểm của BD; Q là trung điểm của EC và I là trung điểm của BC Tính góc IPQ
c) Chứng minh AI vuông góc với DE
Bài 1: Cho tam giác ABC vuông tại A có AB<AC. Gọi M là trung điểm của BC, kẻ MD vuông góc với AB tại D, ME vuông góc với AC tại E. a) Chứng minh AM=DE b) Chứng minh tứ giác DMCE là hình bình hành c) Gọi AH là đường cao của tam giác ABC ( H thuộc BC ). Chứng minh tứ giác DHME là hình thang cân và A đối xứng với H qua DE.
Mình đang cần gấp bài này sáng mai mình kiểm tra. Các bạn giúp mình nhé, cảm ơn các bạn nhiều.
Bài 1. Cho tam giác ABC vuông tại A có góc B= 53 độ
a) Tính góc C.
b) Trên cạnh BC, lấy một điểm D sao cho BD=BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. Chứng minh tam giác BEA = tam giác BED.
Bài 2. Cho tam giác ABC có AB= AC và M là trung điểm của cạnh BC.
a) Chứng minh tam giác AMB = tam giác AMC.
b) Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC.
c) Qua C, vẽ đường thẳng b song song với AM. Gọi N là giao điểm của hai đường thẳng a và b. Chứng minh tam giác AMC = tam giác CNA.
Bài 3. Cho tam giác ABC, gọi M là trung điểm của cạnh BC. Trên tia đối của tia MAlấy điểm D sao cho MD = MA.
a) Chứng minh tam giác MAB = tam giác MDC.
b) Chứng minh rằng AB = CD và AB // CD.
Bài 4. Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = BA. Vẽ AH vuông góc với BC tại H.
a) Chứng minh rằng: tam giác ABD = tam giác EBD và AD = ED.
b) Chứng minh rằng: AH // DE.
*Vẽ hình giúp mình*
bài 1
có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0=>\widehat{C}=180^0-\widehat{A}-\widehat{B}=180^0-90^0-53^0=37^0\)
b) xét 2 tam giác của đề bài có
góc ABE = góc DBE
BD=BA
BE chung
=> 2 tam giác = nhau
Bài 2. Cho tam giác ABC vuông tại A. Một đường thẳng song song với BC cắt hai cạnh AB và
AC lần lượt tại D và E. Gọi M và N lần lượt là trung điểm của DE và BC. Chứng minh rằng:
a) Ba điểm A, M, N thẳng hàng;
b) MN =
2
BC DE
Bài 3. Cho tam giác ABC vuông tại A, đường cao AH. Vẽ HE AB; HF AC. Từ A vẽ một
đường thẳng vuông góc với EF cắt BC tại M. Chứng minh rằng M là trung điểm của BC.
3:
Xét tứ giác AEHF có
góc AEH=góc AFH=góc EAF=90 độ
=>AEHF là hình chữ nhật
AM vuông góc EF
=>góc MAC+góc AFE=90 độ
=>góc MAC+góc AHE=90 độ
=>góc MAC+góc B=90 độ
mà góc MCA+góc B=90 độ
nên góc MAC=góc MCA
=>MA=MC
góc MAC+góc MAB=90 độ
góc MCA+góc MBA=90 độ
mà góc MAC=góc MCA
nên góc MAB=góc MBA
=>MA=MB
=>MB=MC
=>M là trung điểm của BC