Bài 1 : Cho tam giác ABC vuông tại A có AB < AC. Gọi M là trung điểm của BC, kẻ
MD vuông góc với AB tại D, ME vuông góc với AC tại E.
a) Chứng minh AM = DE
b) Chứng minh tứ giác DMCE là hình bình hành
c)Gọi AH là đường cao của tam giác ABC ( H thuộc BC) chứng minh tứ giác
DHME là hình thang cân và điểm A đối xứng với H qua DE.
Bài 2: Cho hinh chữ nhật ABCD, kẻ AN và CM cùng vuông góc với BD (M, N thuộc
BD) a)Chứng minh tứ giác ANCM là hình bình hành
b) Gọi K là điểm đối xứng với A qua N. Chứng minh MNKC là hình chữ nhật
c )Tứ giác DKCB là hình gì? Vì sao?
d) Tia AM cắt KC tại P. Chứng minh các đường thẳng KB, PN, CM đồng quy
Bài 1:
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
Do đó: ADME là hình chữ nhật
Suy ra: AM=DE
b: Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
D là trung điểm của AB
Do đó: MD là đường trung bình
=>MD//CE và MD=CE
hayDMCE là hình bình hành