Cho tam giác ABC cân có AB=AC=10cm, BC=12 cm. Kẻ Ah vuông góc với AC tại H .
a) Chứng minh rằng H là trung điểm của BC
b)Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM=CN. Chứng minh tam giác AMN cân
c) Từ B kẻ BE vuông góc với AM tại E, từ C kẻ CF vuông góc với AN tại F. Chứng minh góc MBE=góc NCF
d) Gọi K là giao điểm của BE và CF. Chứng minh A,H,K thẳng hang
cho tam giác ABC cân có AB=AC=10cm, BC=12cm.Kẻ AH vuông góc với BC tại H.
a) Chứng minh H là trung điểm BC và tính độ dài AH
b)Trện tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM=CN. chứng minh rằng tam giác AMN cân.
c)Từ B kẻ BE vuông góc với AM tại E, từ C kẻ CF vuông góc với AN tại F. Chứng minh góc MBE bằng góc NCF.
d) Gọi K là giao điểm của BE và CF. Chứng minh A,H,K thẳng hàng.
cho tam giác ABC cân có AB=AC=10cm, BC=12cm.Kẻ AH vuông góc với BC tại H.
a) Chứng minh H là trung điểm BC và tính độ dài AH
b)Trện tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM=CN. chứng minh rằng tam giác AMN cân.
c)Từ B kẻ BE vuông góc với AM tại E, từ C kẻ CF vuông góc với AN tại F. Chứng minh góc MBE bằng góc NCF.
d) Gọi K là giao điểm của BE và CF. Chứng minh A,H,K thẳng hàng.
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM = CN
a) Chứng minh ∆AMN cân
b) Kẻ BE ⊥ AM, kẻ CF ⊥ AN (E∈AM; F∈AN). Chứng minh rằng ∆BME = ∆CNF
c) BE, CF kéo dài cắt nhau tại O.Chứng minh AO là phân giác góc MAN.
d) Qua M kẻ đường thẳng vuông góc với AM, qua N kẻ đường thẳng vuông góc với AN chúng cắt nhau tại H. Chứng minh ba điểm A, O, H thẳng hàng.
Cho tam giác ABC cân có AB=AC=10cm, BC=12cm. Kẻ AH vuông góc BC tại H
a, Chứng minh A là trung điểm của BC và tính độ dài BC
b, Trên tia đối của tia BC lấy điểm M, trên tia đối của tia BC lấy điểm N sao cho BM=BN. Chứng minh rằng tam giác AMN cân
c, Từ B kẻ BE vuông góc AM tại E, từ C kẻ EF vuông góc AN tại F. chứng minh tam giác MBE= tam giác NCF
d, Gọi K là giao điểm của BE và CF. Chứng minh A,H,K thảng hàng
Cho tam giác ABC cân có AB=AC=10cm, BC=12cm. Kẻ AH vuông góc BC tại H
a, Chứng minh A là trung điểm của BC và tính độ dài BC
b, Trên tia đối của tia BC lấy điểm M, trên tia đối của tia BC lấy điểm N sao cho BM=BN. Chứng minh rằng tam giác AMN cân
c, Từ B kẻ BE vuông góc AM tại E, từ C kẻ EF vuông góc AN tại F. chứng minh tam giác MBE= tam giác NCF
d, Gọi K là giao điểm của BE và CF. Chứng minh A,H,K thảng hàng
Bài 1:
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M; trên tia đối của tia CB
lấy điểm N sao cho MB = CN. Từ B hạ
BE AM ( E AM) ⊥
, từ C hạ
CF AN ( F AN) ⊥
Chứng minh rằng:
a/ Tam giác AMN cân b/ BE = CF c/
BME = CNF
Bài 2: Cho tam giác ABC cân tại A, đường thẳng vuông góc với AB tại B cắt đường
thẳng vuông góc với AC tại C ở D. Chứng minh rằng AD là tia phân giác của góc BAC
Bài 3: Cho tam giác ABC vuông cân tại A. Qua A kẻ đường thẳng d ( d không cát đoạn
thẳng BC). Từ B hạ
BE d ( E d) ⊥
, từ C hạ
CF d ( F d) ⊥
. So sánh: BE + CF và FE?
Bài 4: Cho tam giác ABC vuông cân tại A, kẻ AH vuông góc với BC ( H thuộc BC). Từ
H kẻ
HM AC ⊥
và trên tia HM lấy điểm E sao cho HM = EM. Kẻ
HN AB ⊥
và trên tia
HN lấy điểm D sao cho NH = ND. Chứng minh rằng:
a/ Ba điểm D; A; E thẳng hàng
b/ BD // CE
c/ BC = BD + CE
Bài 5: Cho tam giác ABC vuông cân tại A, D là trung điểm của AC. Từ A kẻ đường
thẳng vuông góc với BD, cắt BC tại E. Chứng minh rằng: AE = 2DE.
Cho tam giác ABC cân tại A và các điểm E, F lần lượt nằm trên các cạnh AC, AB sao cho BE vuông góc với AC, CF vuông góc với AB,BE cắt BF tại M. a.Chứng minh rằng BE = CF b. chứng minh AM là đường trung trực của BC(kẻ hình , 0 cần viết giả thiết kết luận)
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối tia của tia CB lấy điểm N sao cho BM = CN.
a) Chứng minh tam giác AMN cân.
b) Kẻ B E ⊥ A M ( E ∈ A M ) , C F ⊥ A N ( F ∈ A N ) . Chứng minh ∆ B M E = ∆ C N F .
c) EB và FC kéo dài cắt nhau tại O. Chứng minh AO là tia phân giác của góc MAN.
d) Qua M kẻ đường thẳng vuông góc với AM, qua N kẻ đường thẳng vuông góc với AN, chúng cắt nhau ở H. Chứng minh ba điểm A, O, H thẳng hàng.