Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
camcon
Xem chi tiết

Hàm số xác định trên R khi và chỉ khi:

\(sin^2x+\left(2m-3\right)cosx+3m-2>0;\forall x\in R\)

\(\Leftrightarrow-cos^2x+\left(2m-3\right)cosx+3m-1>0\)

\(\Leftrightarrow t^2-\left(2m-3\right)t-3m+1< 0;\forall t\in\left[-1;1\right]\)

\(\Leftrightarrow t^2+3t+1< m\left(2t+3\right)\)

\(\Leftrightarrow\dfrac{t^2+3t+1}{2t+3}< m\) (do \(2t+3>0;\forall t\in\left[-1;1\right]\))

\(\Leftrightarrow m>\max\limits_{\left[-1;1\right]}\dfrac{t^2+3t+1}{2t+3}\)

Ta có: \(\dfrac{t^2+3t+1}{2t+3}=\dfrac{t^2+t-2+2t+3}{2t+3}=\dfrac{\left(t-1\right)\left(t+2\right)}{2t+3}+1\)

Do \(-1\le t\le1\Rightarrow\dfrac{\left(t-1\right)\left(t+2\right)}{2t+3}\le0\)

\(\Rightarrow\max\limits_{\left[-1;1\right]}\dfrac{t^2+3t+1}{2t+3}=1\)

\(\Rightarrow m>1\)

camcon
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 12 2022 lúc 20:18

Hàm xác định trên \(\left[2;3\right]\) khi và chỉ khi:

\(x^2-2x-m>0;\forall x\in\left[2;3\right]\)

\(\Rightarrow x^2-2x>m;\forall x\in\left[2;3\right]\)

\(\Rightarrow m< \min\limits_{\left[2;3\right]}\left(x^2-2x\right)\)

Xét hàm \(f\left(x\right)=x^2-2x\) trên \(\left[2;3\right]\)

\(-\dfrac{b}{2a}=1\notin\left[2;3\right]\)

\(f\left(2\right)=0\) ; \(f\left(3\right)=3\)

\(\Rightarrow\min\limits_{\left[2;3\right]}\left(x^2-2x\right)=0\)

\(\Rightarrow m< 0\)

Diệu Khói
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 10 2021 lúc 13:48

ĐKXĐ: \(\left\{{}\begin{matrix}x-m+1\ge0\\-x+2m>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge m-1\\x< 2m\end{matrix}\right.\)

\(\Rightarrow x\in[m-1;2m)\)

Để hàm xác định trên (3;4)

\(\Rightarrow\left(3;4\right)\subset[m-1;2m)\)

\(\Rightarrow\left\{{}\begin{matrix}m-1\le3\\2m\ge4\end{matrix}\right.\) \(\Rightarrow2\le m\le4\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 10 2017 lúc 9:34

Đáp án A

Phương Văn Hồ
Xem chi tiết
camcon
Xem chi tiết

\(2sinx.sin3x+4m.sin2x-cos2x-m^2+1\ge0;\forall x\)

\(\Leftrightarrow-cos4x+4m.sin2x-m^2+1\ge0\)

\(\Leftrightarrow2sin^22x+4m.sin2x-m^2\ge0\)

\(\Leftrightarrow2t^2+4m.t-m^2\ge0\) ; \(\forall t\in\left[-1;1\right]\)

\(\Leftrightarrow\left(t+m\right)^2\ge\dfrac{3m^2}{2}\)

\(\Rightarrow\left[{}\begin{matrix}t+m\ge\sqrt{\dfrac{3m^2}{2}}\\t+m\le-\sqrt{\dfrac{3m^2}{2}}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}t\ge-m+\sqrt{\dfrac{3m^2}{2}}\\t\le-m-\sqrt{\dfrac{3m^2}{2}}\end{matrix}\right.\)

Điều này đúng với mọi \(t\in\left[-1;1\right]\) khi:

\(\left[{}\begin{matrix}-1\ge-m+\sqrt{\dfrac{3m^2}{2}}\left(1\right)\\1\le-m-\sqrt{\dfrac{3m^2}{2}}\left(2\right)\end{matrix}\right.\)

- Xét (1), nếu \(m\le0\Rightarrow-m\ge0\Rightarrow-m+\sqrt{\dfrac{3m^2}{2}}>0\) (ktm)

Với \(m>0\Rightarrow-1\ge-m+m\sqrt{\dfrac{3}{2}}\Rightarrow m\le-2-\sqrt{6}\)

- Xét (2), với \(m>0\Rightarrow-m-\sqrt{\dfrac{3m^2}{2}}< 0\) (ktm)

Với \(m< 0\Rightarrow1\le-m+m\sqrt{\dfrac{3}{2}}\Rightarrow m\ge2+\sqrt{6}\)

Vậy \(\left[{}\begin{matrix}m\le-2-\sqrt{6}\\m\ge2+\sqrt{6}\end{matrix}\right.\)

Cách tam thức có vẻ tốt hơn cách này

Cách tam thức:

\(f\left(t\right)=2t^2+4mt-m^2\ge0;\forall t\in\left[-1;1\right]\)

Với \(m=0\) luôn thỏa mãn

Với \(m\ne0:\)

\(\Delta'=4m^2+2m^2=6m^2>0\)\(\forall m\ne0\)

\(\Rightarrow\) Bài toán thỏa mãn khi: \(\left[{}\begin{matrix}1\le t_1< t_2\\t_1< t_2\le-1\end{matrix}\right.\)

TH1: \(1\le t_1< t_2\Rightarrow\left\{{}\begin{matrix}f\left(1\right)\ge0\\\dfrac{t_1+t_2}{2}=-m>1\\\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-m^2+4m+2\ge0\\m< -1\end{matrix}\right.\) \(\Rightarrow m\in\varnothing\)

A, đến đây mới thấy cách làm hồi nãy quên hợp lại, xét TH \(m>0\) ra nghiệm \(m\le-2-\sqrt{6}\) mà quên luôn điều kiện m>0

TH2: \(t_1< t_2\le-1\Rightarrow\left\{{}\begin{matrix}f\left(-1\right)\ge0\\\dfrac{t_1+t_2}{2}=-m< -1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-m^2-4m+2\ge0\\m>1\end{matrix}\right.\) \(\Rightarrow m\in\varnothing\)

Vậy \(m=0\) là giá trị duy nhất thỏa mãn

Phát hiện thêm 1 vấn đề nữa, \(A^2\ge B^2\Rightarrow\left[{}\begin{matrix}A\ge B\\A\le-B\end{matrix}\right.\) là sai, thực tế phức tạp và nhiều trường hợp hơn nhiều

Vậy thì chỉ có cách tam thức này là ổn thôi nếu ko cô lập được m. Kiểu bình phương kia sai mất căn bản.

Nguyễn Thùy Chi
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 4 2023 lúc 20:22

loading...  

Lê Mai
Xem chi tiết
Thương Thương
Xem chi tiết