Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ILoveMath
Xem chi tiết
Nguyễn Hoàng Minh
26 tháng 11 2021 lúc 20:20

a.

\(x=9-\dfrac{1}{\sqrt{\dfrac{9-4\sqrt{5}}{4}}}+\dfrac{1}{\sqrt{\dfrac{9+4\sqrt{5}}{4}}}\\ x=9-\dfrac{1}{\dfrac{\sqrt{5}-2}{2}}+\dfrac{1}{\dfrac{\sqrt{5}+2}{2}}\\ x=9-\left(\dfrac{2}{\sqrt{5}-2}-\dfrac{2}{\sqrt{5}+2}\right)=9-8=1\\ \Rightarrow f\left(x\right)=f\left(1\right)=\left(1-1+1\right)^{2016}=1\)

Nguyễn Hoàng Minh
26 tháng 11 2021 lúc 20:32

c.

\(=\sin x\cdot\cos x+\dfrac{\sin^2x}{1+\dfrac{\cos x}{\sin x}}+\dfrac{\cos^2x}{1+\dfrac{\sin x}{\cos x}}\\ =\sin x\cdot\cos x+\dfrac{\sin^2x}{\dfrac{\sin x+\cos x}{\sin x}}+\dfrac{\cos^2x}{\dfrac{\sin x+\cos x}{\cos x}}\\ =\sin x\cdot\cos x+\dfrac{\sin^3x}{\sin x+\cos x}+\dfrac{\cos^3x}{\sin x+\cos x}\\ =\sin x\cdot\cos x+\dfrac{\left(\sin x+\cos x\right)\left(\sin^2x-\sin x\cdot\cos x+\cos^2x\right)}{\sin x+\cos x}\\ =\sin x\cdot\cos x-\sin x\cdot\cos x+\sin^2x+\cos^2x\\ =1\)

Nguyễn Hoàng Minh
26 tháng 11 2021 lúc 20:44

d.

\(\dfrac{2}{a+b\sqrt{5}}-\dfrac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\\ \Leftrightarrow\dfrac{-a-5b\sqrt{5}}{\left(a+b\sqrt{5}\right)\left(a-b\sqrt{5}\right)}=-9-20\sqrt{5}\\ \Leftrightarrow\dfrac{a+5b\sqrt{5}}{a^2-5b^2}=9+20\sqrt{5}\\ \Leftrightarrow\left(9+20\sqrt{5}\right)\left(a^2-5b^2\right)=a+5b\sqrt{5}\\ \Leftrightarrow9\left(a^2-5b^2\right)+\sqrt{5}\left(20a^2-100b^2\right)-5b\sqrt{5}=a\\ \Leftrightarrow\sqrt{5}\left(20a^2-100b^2-5b\right)=9a^2-45b^2+a\)

Vì \(\sqrt{5}\) vô tỉ nên để \(\sqrt{5}\left(20a^2-100b^2-5b\right)\) nguyên thì

\(\left\{{}\begin{matrix}20a^2-100b^2-5b=0\\9a^2-45b^2+a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}180a^2-900b^2-45b=0\\180a^2-900b^2+20a=0\end{matrix}\right.\\ \Leftrightarrow20a+45b=0\\ \Leftrightarrow4a+9b=0\Leftrightarrow a=-\dfrac{9}{4}b\\ \Leftrightarrow9a^2-45b^2+a=\dfrac{729}{16}b^2-45b^2-\dfrac{9}{4}b=0\\ \Leftrightarrow\dfrac{9}{16}b^2-\dfrac{9}{4}b=0\\ \Leftrightarrow b\left(\dfrac{9}{16}b-\dfrac{9}{4}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}b=0\\b=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=0\\a=9\end{matrix}\right.\)

Với \(\left(a;b\right)=\left(0;0\right)\left(loại\right)\)

Vậy \(\left(a;b\right)=\left(9;4\right)\)

Kitana
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 8 2021 lúc 17:12

\(x=9-\dfrac{2}{\sqrt{9-4\sqrt{5}}}+\dfrac{2}{\sqrt{9+4\sqrt{5}}}=9-\dfrac{2}{\sqrt{\left(\sqrt{5}-2\right)^2}}+\dfrac{2}{\sqrt{\left(\sqrt{5}+2\right)^2}}\)

\(=9-\dfrac{2}{\sqrt{5}-2}+\dfrac{2}{\sqrt{5}+2}=9+\dfrac{2\left(\sqrt{5}-2-\sqrt{5}-2\right)}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}\)

\(=9+\left(-8\right)=1\)

\(\Rightarrow\left(1^{31}-5.1^{10}+3\right)^{2018}=\left(-1\right)^{2018}=1\)

Khánh An Ngô
Xem chi tiết
Võ Việt Hoàng
22 tháng 7 2023 lúc 8:47

\(a) \sqrt{4x^2− 9} = 2\sqrt{x + 3}\)

\(ĐK:x\ge\dfrac{3}{2}\)

\(pt\Leftrightarrow4x^2-9=4\left(x+3\right)\)

\(\Leftrightarrow4x^2-9=4x+12\)

\(\Leftrightarrow4x^2-4x-21=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{22}}{2}\left(l\right)\\x=\dfrac{1+\sqrt{22}}{2}\left(tm\right)\end{matrix}\right.\)

\(b)\sqrt{4x-20}+3.\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)

\(ĐK:x\ge5\)

\(pt\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\)

\(\Leftrightarrow x-5=4\Leftrightarrow x=9\left(tm\right)\)

Võ Việt Hoàng
22 tháng 7 2023 lúc 9:06

\(c)\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27.\sqrt{\dfrac{x-1}{81}}=4\)

ĐK:x>=1

\(pt\Leftrightarrow2\sqrt{x-1}-\sqrt{x-1}+3\sqrt{x-1}=4\)

\(\Leftrightarrow4\sqrt{x-1}=4\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\Leftrightarrow x=2\left(tm\right)\)

\(d)5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)

\(ĐK:x\ge3\)

\(pt\Leftrightarrow3\sqrt{x-3}-\dfrac{14}{3}\sqrt{x-3}-7\sqrt{x^2-9}+6\sqrt{x^2-9}=0\)

\(\Leftrightarrow-\dfrac{5}{3}\sqrt{x-3}-\sqrt{x^2-9}=0\Leftrightarrow\dfrac{5}{3}\sqrt{x-3}+\sqrt{x^2-9}=0\)

\(\Leftrightarrow(\dfrac{5}{3}+\sqrt{x+3})\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x-3}=0\)    (vì \(\dfrac{5}{3}+\sqrt{x+3}>0\))

\(\Leftrightarrow x-3=0\Leftrightarrow x=3\left(nhận\right)\)

 

Hanako
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 12 2021 lúc 21:17

\(=\left(\dfrac{3}{2}-3\right).\sqrt{\dfrac{25}{16}}=\left(-\dfrac{3}{2}\right).\dfrac{5}{4}=-\dfrac{15}{8}\)

Ling ling 2k7
Xem chi tiết
Nguyễn Cẩm Uyên
21 tháng 11 2021 lúc 20:26

undefined

DŨNG
Xem chi tiết
Nguyễn Ngọc Huy Toàn
9 tháng 5 2022 lúc 20:43

\(B=\sqrt{9+4\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)

\(B=\sqrt{\left(\sqrt{5}+2\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}\)

\(B=\left|\sqrt{5}+2\right|+\left|\sqrt{5}-2\right|\)

\(B=\sqrt{5}+2+\sqrt{5}-2\)

\(B=2\sqrt{5}\)

 

Nguyễn Ngọc Huy Toàn
9 tháng 5 2022 lúc 20:50

\(A=\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}\)

\(A=\left(\dfrac{\sqrt{12}-\sqrt{6}}{2\sqrt{2}-2}-\dfrac{6\sqrt{6}}{3}\right).\dfrac{1}{\sqrt{6}}\)

\(A=\left(\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-2\sqrt{6}\right).\dfrac{1}{\sqrt{6}}\)

\(A=\left(\sqrt{6}-2\sqrt{6}\right).\dfrac{1}{\sqrt{6}}\)

\(A=-\sqrt{6}.\dfrac{1}{\sqrt{6}}\)

\(A=-1\)

 

 

Lương Ngọc Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 6 2023 lúc 8:12

a:

\(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-1\right):\dfrac{9-x+x-9-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}-\sqrt{x}-3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{-\left(\sqrt{x}-2\right)^2}=\dfrac{3}{\sqrt{x}-2}\)

b: Khi x=7-4căn 3 thì 

\(A=\dfrac{3}{2-\sqrt{3}-2}=\dfrac{3}{-\sqrt{3}}=-\sqrt{3}\)

c: A=3

=>căn x-2=1

=>x=9(loại)

YangSu
29 tháng 6 2023 lúc 8:16

\(a,A=\left(\dfrac{x-3\sqrt{x}}{x-9}-1\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\left(dkxd:x\ne4,x\ge0,x\ne9\right)\)

\(=\dfrac{x-3\sqrt{x}-x+9}{x-9}:\dfrac{9-x+\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{-3\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{9-x+x-9-x+4\sqrt{x}-4}\)

\(=\dfrac{-3\left(\sqrt{x}-3\right)}{\sqrt{x}-3}.\dfrac{\sqrt{x}-2}{4\sqrt{x}-4-x}\)

\(=\dfrac{-3\left(\sqrt{x}-2\right)}{-\left(x-4\sqrt{x}+4\right)}\)

\(=\dfrac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)^2}\)

\(=\dfrac{3}{\sqrt{x}-2}\)

\(b,x=7-4\sqrt{3}\Rightarrow A=\dfrac{3}{\sqrt{7-4\sqrt{3}}-2}=\dfrac{3}{\sqrt{\left(\sqrt{3}-2\right)^2}-2}=\dfrac{3}{\left|\sqrt{3}-2\right|-2}=\dfrac{3}{-\sqrt{3}+2-2}=\dfrac{\sqrt{3^2}}{-\sqrt{3}}=-\sqrt{3}\)

\(c,A=3\Rightarrow\dfrac{3}{\sqrt{x}-2}=3\\ \Rightarrow\dfrac{3-3\left(\sqrt{x}-2\right)}{\sqrt{x}-2}=0\\ \Rightarrow3-3\sqrt{x}+6=0\\ \Rightarrow-3\sqrt{x}=-9\\ \Rightarrow\sqrt{x}=3\\ \Rightarrow x=9\left(ktm\right)\)

Vậy không có giá trị x thỏa mãn đề bài.

An Đinh Khánh
Xem chi tiết
HT.Phong (9A5)
16 tháng 8 2023 lúc 8:39

1) 

a) \(\sqrt{2x-4}\) có nghĩa khi:

\(2x-4\ge0\)

\(\Leftrightarrow2x\ge4\)

\(\Leftrightarrow x\ge\dfrac{4}{2}\)

\(\Leftrightarrow x\ge2\)

b) \(\sqrt{\dfrac{-7}{4-x}}\) có nghĩa khi 

\(\dfrac{-7}{4-x}\ge0\) mà \(-7< 0\)

\(\Rightarrow4-x\le0\)

\(\Leftrightarrow x\ge4\)

HT.Phong (9A5)
16 tháng 8 2023 lúc 8:49

2) 

a) \(A=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(A=\sqrt{\left(\sqrt{5}\right)^2+2\cdot2\sqrt{5}+2^2}-\sqrt{\left(\sqrt{5}\right)^2-2\cdot2\cdot\sqrt{5}+2^2}\)

\(A=\sqrt{\left(\sqrt{5}+2\right)^2}-\sqrt{\left(\sqrt{5}-2\right)^2}\)

\(A=\left|\sqrt{5}+2\right|-\left|\sqrt{5}-2\right|\)

\(A=\sqrt{5}+2-\sqrt{5}+2\)

\(A=4\)

\(B=\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}-5}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{5}-\sqrt{7}}\)

\(B=\left(-\dfrac{\sqrt{14}-\sqrt{7}}{\sqrt{2}-1}-\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)

\(B=\left[-\dfrac{\sqrt{7}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}-\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\right]\cdot\left(\sqrt{7}-\sqrt{5}\right)\)

\(B=\left(-\sqrt{7}-\sqrt{5}\right)\cdot\left(\sqrt{7}+\sqrt{5}\right)\)

\(B=-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)

\(B=-\left(7-5\right)\)

\(B=-2\)

Lương Ngọc Anh
Xem chi tiết
YangSu
28 tháng 6 2023 lúc 19:08

\(a,P=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{4x}{4-x}\right):\dfrac{x+5\sqrt{x}+6}{x-4}\left(dk:x\ge0,x\ne4\right)\)

\(=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+2}+\dfrac{4x}{x-4}\right).\dfrac{x-4}{x+2\sqrt{x}+3\sqrt{x}+6}\)

\(=\dfrac{\left(\sqrt{x}+2\right)^2-\left(\sqrt{x}-2\right)^2+4x}{x-4}.\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}+2\right)+3\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x+4\sqrt{x}+4-x+4\sqrt{x}-4+4x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{4x+8\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{4\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{4\sqrt{x}}{\sqrt{x}+3}\)

\(b,x=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{4}}\\ =\sqrt{\left(\sqrt{5}+2\right)^2}-\sqrt{\left(\sqrt{5}-2\right)^2}\\ =\left|\sqrt{5}+2\right|-\left|\sqrt{5}-2\right|\\ =\sqrt{5}+2-\sqrt{5}+2\\ =4\)

Khi \(x=4\Rightarrow P=\dfrac{4\sqrt{4}}{\sqrt{4}+3}=\dfrac{4.2}{2+3}=\dfrac{8}{5}\)

\(c,P=2\Leftrightarrow\dfrac{4\sqrt{x}}{\sqrt{x}+3}=2\Leftrightarrow\dfrac{4\sqrt{x}-2\left(\sqrt{x}+3\right)}{\sqrt{x}+3}=0\Leftrightarrow2\sqrt{x}-6=0\Leftrightarrow\sqrt{x}=3\Leftrightarrow x=9\)

manh
Xem chi tiết
Akai Haruma
15 tháng 10 2023 lúc 17:54

Lời giải:

a. ĐKXĐ: $x\geq 5$

PT $\Leftrightarrow \sqrt{4}.\sqrt{x-5}+\sqrt{x-5}=4+3.\sqrt{\frac{1}{9}}.\sqrt{x-5}$

$\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}=4+\sqrt{x-5}$

$\Leftrightarrow 2\sqrt{x-5}=4$

$\Leftrightarrow \sqrt{x-5}=2$

$\Leftrightarrow x-5=4$

$\Leftrightarrow x=9$ (tm)

b. Sửa đoạn 4x-45 thành 4x-20.

ĐKXĐ: $x\geq 5$

PT $\Leftrightarrow \sqrt{4}.\sqrt{x-5}+\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}\sqrt{4}.\sqrt{x-5}=4$

$\Leftrightarrow 2\sqrt{x-5}+\frac{1}{3}\sqrt{x-5}-\frac{2}{3}\sqrt{x-5}=4$

$\Leftrightarrow \frac{5}{3}\sqrt{x-5}=4$

$\Leftrightarrow \sqrt{x-5}=\frac{12}{5}$

$\Leftrightarrow x-5=\frac{144}{25}=5,76$

$\Leftrightarrow x=10,76$ (tm)