Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần văn ổi
Xem chi tiết
le anh tu
26 tháng 10 2017 lúc 21:04

Trần văn ổi ()

Đỗ Công Dũng
26 tháng 10 2017 lúc 21:17

đù khó thế

Trần văn ổi
27 tháng 10 2017 lúc 21:28

tl j z mấy chế , k câu dc đâu :))

BÙI BẢO KHÁNH
Xem chi tiết
Kiều Vũ Linh
9 tháng 1 2024 lúc 17:14

1) Do x ∈ Z và 0 < x < 3

⇒ x ∈ {1; 2}

2) Do x ∈ Z và 0 < x ≤ 3

⇒ x ∈ {1; 2; 3}

3) Do x ∈ Z và -1 < x ≤ 4

⇒ x ∈ {0; 1; 2; 3; 4}

tuan anh le
Xem chi tiết
`ღ´Ngốc`ღ´
10 tháng 8 2017 lúc 10:42

\(\left(x-3\right)^3+\left(x+3\right)^3=0\)

\(\Leftrightarrow x^3-9x^2+27x-27+x^3+9x^2+27x+27=0\)\(\Leftrightarrow2x^3+54x^2=0\)

\(\Leftrightarrow x^2\left(2x+54\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\2x+54=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-27\end{matrix}\right.\)

\(b,\left(x+1\right)^3-\left(x-1\right)^3=0\)

\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1=0\)\(\Leftrightarrow6x^2+2=0\)

\(\Leftrightarrow6x^2=-2\)

\(\Leftrightarrow x^2=-3\) ( vô lí)

Vậy pt vô nghiệm

\(c,x^2-4x+3=0\)

\(\Leftrightarrow x^2-3x-x+3=0\)

\(\Leftrightarrow x\left(x-3\right)-\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

\(d,4x^2+4x+1=0\)

\(\Leftrightarrow\left(2x+1\right)^2=0\)

\(\Rightarrow2x+1=0\)

\(\Leftrightarrow2x=-1\Rightarrow x=-\dfrac{1}{2}\)

\(e,\left(x+2\right)^2-\left(x+3\right)^2=0\)

\(\Leftrightarrow\left(x+2-x-3\right)\left(x+2+x+3\right)=0\)

\(\Leftrightarrow-\left(2x+5\right)=0\)

\(\Leftrightarrow-2x-5=0\)

\(\Leftrightarrow-2x=5\Rightarrow x=-\dfrac{5}{2}\)

Học tốt nha you <3

tuan anh le
Xem chi tiết
`ღ´Ngốc`ღ´
10 tháng 8 2017 lúc 10:42

\(\left(x-3\right)^3+\left(x+3\right)^3=0\)

\(\Leftrightarrow x^3-9x^2+27x-27+x^3+9x^2+27x+27=0\)\(\Leftrightarrow2x^3+54x^2=0\)

\(\Leftrightarrow x^2\left(2x+54\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\2x+54=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-27\end{matrix}\right.\)

\(b,\left(x+1\right)^3-\left(x-1\right)^3=0\)

\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1=0\)\(\Leftrightarrow6x^2+2=0\)

\(\Leftrightarrow6x^2=-2\)

\(\Leftrightarrow x^2=-3\) ( vô lí)

Vậy pt vô nghiệm

\(c,x^2-4x+3=0\)

\(\Leftrightarrow x^2-3x-x+3=0\)

\(\Leftrightarrow x\left(x-3\right)-\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

\(d,4x^2+4x+1=0\)

\(\Leftrightarrow\left(2x+1\right)^2=0\)

\(\Rightarrow2x+1=0\)

\(\Leftrightarrow2x=-1\Rightarrow x=-\dfrac{1}{2}\)

\(e,\left(x+2\right)^2-\left(x+3\right)^2=0\)

\(\Leftrightarrow\left(x+2-x-3\right)\left(x+2+x+3\right)=0\)

\(\Leftrightarrow-\left(2x+5\right)=0\)

\(\Leftrightarrow-2x-5=0\)

\(\Leftrightarrow-2x=5\Rightarrow x=-\dfrac{5}{2}\)

Học tốt nha you <3

tuan anh le
Xem chi tiết
`ღ´Ngốc`ღ´
10 tháng 8 2017 lúc 10:48

\(\left(x-3\right)^3+\left(x+3\right)^3=0\)

\(\Leftrightarrow x^3-9x^2+27x-27+x^3+9x^2+27x+27=0\)\(\Leftrightarrow2x^3+54x^2=0\)

\(\Leftrightarrow x^2\left(2x+54\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\2x+54=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-27\end{matrix}\right.\)

\(b,\left(x+1\right)^3-\left(x-1\right)^3=0\)

\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1=0\)\(\Leftrightarrow6x^2+2=0\)

\(\Leftrightarrow6x^2=-2\)

\(\Leftrightarrow x^2=-3\) ( vô lí)

Vậy pt vô nghiệm

\(c,x^2-4x+3=0\)

\(\Leftrightarrow x^2-3x-x+3=0\)

\(\Leftrightarrow x\left(x-3\right)-\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

\(d,4x^2+4x+1=0\)

\(\Leftrightarrow\left(2x+1\right)^2=0\)

\(\Rightarrow2x+1=0\)

\(\Leftrightarrow2x=-1\Rightarrow x=-\dfrac{1}{2}\)

\(e,\left(x+2\right)^2-\left(x+3\right)^2=0\)

\(\Leftrightarrow\left(x+2-x-3\right)\left(x+2+x+3\right)=0\)

\(\Leftrightarrow-\left(2x+5\right)=0\)

\(\Leftrightarrow-2x-5=0\)

\(\Leftrightarrow-2x=5\Rightarrow x=-\dfrac{5}{2}\)

Học tốt nha you <3

Xuân Hương
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
23 tháng 9 2023 lúc 23:50

a) \(2{x^2} + 3x + 1 \ge 0\)

Tam thức bậc hai \(f\left( x \right) = 2{x^2} + 3x + 1\) có 2 nghiệm phân biệt \(x =  - 1,x = \frac{{ - 1}}{2}\)

hệ số \(a = 2 > 0\)

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy \(f\left( x \right) \ge 0 \Leftrightarrow \left[ \begin{array}{l}x \le  - 1\\x \ge  - \frac{1}{2}\end{array} \right.\)

Vậy tập nghiệm của bất phương trình là \(\left( { - \infty ; - 1} \right] \cup \left[ { - \frac{1}{2}; + \infty } \right)\)

b) \( - 3{x^2} + x + 1 > 0\)

Tam thức bậc hai \(f\left( x \right) =  - 3{x^2} + x + 1\) có 2 nghiệm phân biệt \(x = \frac{{1 - \sqrt {13} }}{6},x = \frac{{1 + \sqrt {13} }}{6}\)

Hệ số \(a =  - 3 < 0\)

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy \(f\left( x \right) > 0\)\( \Leftrightarrow \frac{{1 - \sqrt {13} }}{6} < x < \frac{{1 + \sqrt {13} }}{6}\)

Vậy tập nghiệm của bất phương trình là \(\left( {\frac{{1 - \sqrt {13} }}{6};\frac{{1 + \sqrt {13} }}{6}} \right)\)

c) \(4{x^2} + 4x + 1 \ge 0\)

Tam thức bậc hai \(f\left( x \right) = 4{x^2} + 4x + 1\) có nghiệm duy nhất \(x = \frac{{ - 1}}{2}\)

hệ số \(a = 4 > 0\)

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy \(f\left( x \right) \ge 0 \Leftrightarrow x \in \mathbb{R}\)

Vậy tập nghiệm của bất phương trình là \(\mathbb{R}\)

d) \( - 16{x^2} + 8x - 1 < 0\)

Tam thức bậc hai \(f\left( x \right) =  - 16{x^2} + 8x - 1\) có nghiệm duy nhất \(x = \frac{1}{4}\)

hệ số \(a =  - 16 < 0\)

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy \(f\left( x \right) < 0 \Leftrightarrow x \ne \frac{1}{4}\)

Vậy tập nghiệm của bất phương trình là \(\mathbb{R}\backslash \left\{ {\frac{1}{4}} \right\}\)

e) \(2{x^2} + x + 3 < 0\)

Ta có \(\Delta  = {1^2} - 4.2.3 =  - 23 < 0\) và có \(a = 2 > 0\)

Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \(2{x^2} + x + 3\) mang dấu “-” là \(\emptyset \)

Vậy tập nghiệm của bất phương trình \(2{x^2} + x + 3 < 0\) là \(\emptyset \)

g) \( - 3{x^2} + 4x - 5 < 0\)

Tam thức bậc hai \(f\left( x \right) =  - 3{x^2} + 4x - 5\) có \(\Delta ' = {2^2} - \left( { - 3} \right).\left( { - 5} \right) =  - 11 < 0\) và có \(a =  - 3 < 0\)

Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \( - 3{x^2} + 4x - 5\) mang dấu “-” là \(\mathbb{R}\)

Vậy tập nghiệm của bất phương trình \( - 3{x^2} + 4x - 5 < 0\) là \(\mathbb{R}\)

Bình Nguyễn Thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 7 2023 lúc 20:12

a: \(\dfrac{x+5}{x-1}+\dfrac{8}{x^2-4x+3}=\dfrac{x+1}{x-3}\)

=>(x+5)(x-3)+8=x^2-1

=>x^2+2x-15+8=x^2-1

=>2x-7=-1

=>x=3(loại)

b: \(\dfrac{x-4}{x-1}-\dfrac{x^2+3}{1-x^2}+\dfrac{5}{x+1}=0\)

=>(x-4)(x+1)+x^2+3+5(x-1)=0

=>x^2-3x-4+x^2+3+5x-5=0

=>2x^2+2x-6=0

=>x^2+x-3=0

=>\(x=\dfrac{-1\pm\sqrt{13}}{2}\)

e: =>x^2-2x+1+2x+2=5x+5

=>x^2+3=5x+5

=>x^2-5x-2=0

=>\(x=\dfrac{5\pm\sqrt{33}}{2}\)

g: (x-3)(x+4)*x=0

=>x=0 hoặc x-3=0 hoặc x+4=0

=>x=0;x=3;x=-4

Phạm Vũ Hùng Thơ
Xem chi tiết
Aki Tsuki
12 tháng 10 2017 lúc 20:47

Bài 3:

1. \(\left(x-1\right)\left(x+2\right)+5x-5=0\)

\(\Rightarrow\left(x-1\right)\left(x+2\right)+5\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x+2+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)

Vậy.......................

2. \(\left(3x+5\right)\left(x-3\right)-6x-10=0\)

\(\Rightarrow\left(3x+5\right)\left(x-3\right)-2\left(3x+5\right)=0\)

\(\Rightarrow\left(3x+5\right)\left(x-3-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}3x+5=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=5\end{matrix}\right.\)

Vậy........................

3. \(\left(x-2\right)\left(2x+3\right)-7x^2+14x=0\)

\(\Rightarrow\left(x-2\right)\left(2x+3\right)-7x\left(x-2\right)=0\)

\(\Rightarrow\left(x-2\right)\left(2x+3-7x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2=0\\-5x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{3}{5}\end{matrix}\right.\)

Vậy............................

4, 5 tương tự nhé bn!

hattori heiji
12 tháng 10 2017 lúc 20:58

bài 3

1 (x-1)(x+2)+5x-5=0

=>(x-1)(x+2)+(5x-5)=o

=>(x-1)(x+2)+5(x-1)=0

=>(x-1)(x+2+5)=0

=>(x-1)(x+7)=0

=>\(\left[{}\begin{matrix}x-1=0\\x+7=0\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)

vậy x=1 hoặc x=-7

2. (3x+5)(x-3)-6x-10=0

=>(3x+5)(x-3)-(6x+10)=0

=>(3x+5)(x-3)-2(3x+5)=0

=>(3x+5)(x-3-2)=0

=>(3x+5)(x-5)=0

=>\(\left[{}\begin{matrix}3x+5=0\\x-5=0\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=5\end{matrix}\right.\)

mỹ nguyễn ngọc
Xem chi tiết
Đường Quỳnh Giang
29 tháng 9 2018 lúc 0:06

\(2x^3-50x=0\)

<=>  \(2x\left(x^2-25\right)=0\)

<=>   \(2x\left(x-5\right)\left(x+5\right)=0\)

đến đây

bạn tự giải nhé

hk tốt