Vì (x+3)2 \(\ge0,\forall x\) và (x-1)2 \(\ge0,\forall x\)
Mà theo bài ra : \(\left(x+3\right)^2+\left(x-1\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+3=0\\x-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\) => phương trình vô nghiệm
Với mọi giá trị của x ta có:
\(\left(x+3\right)^2+\left(x-1\right)^2\ge0\)
Để \(\left(x+3\right)^2+\left(x-1\right)^2=0\) thì
\(\left\{{}\begin{matrix}\left(x+3\right)^2=0\\\left(x-1\right)^2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\Rightarrow x\in\varnothing\)
Vậy \(x\in\varnothing\)
Chúc bạn học tốt!!!
\(\left(x+3\right)^2+\left(x-1\right)^2=0\)
Vì \(\left\{{}\begin{matrix}\left(x+3\right)^2\ge0\\\left(x-1\right)^2\ge0\end{matrix}\right.\)=> \(\left(x+3\right)^2+\left(x-1\right)^2\ge0\)
Khi \(\left\{{}\begin{matrix}x+3=0\\x-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0-3\\x=0+1\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)