Tính M=\(\sqrt{15x^2-8x\sqrt{15}+16}\) với x=\(\sqrt{\dfrac{3}{5}}+\sqrt{\dfrac{5}{3}}\)
Tìm x biết
a) \(\dfrac{5}{3}\sqrt{15x}-\sqrt{15x}-2=\dfrac{1}{3}\sqrt{15x}\)
b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)
c ) \(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
d) \(\sqrt{25x-25}-\dfrac{15}{2}\sqrt{\dfrac{x-1}{9}}=6+\sqrt{x+1}\)
e ) \(\sqrt{4x^2+4x+1}=1\)
\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}=16\)
\(\Leftrightarrow\sqrt{x+1}=4\)
<=> x + 1 = 16
<=> x = 15 (nhận)
~ ~ ~
\(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow\sqrt{x+5}=2\)
<=> x + 5 = 4
<=> x = - 1 (nhận)
tính tan40°×tan45°×tan50°
#Help me -.-
Tính
\(\sqrt{15x^2-8x\sqrt{15}+16}\) tại x=\(\sqrt{15}\)
Rút gọn
\(\dfrac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}\) - \(\dfrac{6+2\sqrt{6}}{\sqrt{3}+\sqrt{2}}\)
help :(
Tại x=15\(\Rightarrow\sqrt{15x^2-8x+\sqrt{15}+16}=\sqrt{15.\left(\sqrt{15}\right)^2-8.\sqrt{15}.\sqrt{15}+16}=\sqrt{15^2-2.15.4+4^2}=\sqrt{\left(15-4\right)^2}=\sqrt{11^2}=11\)
Ta có \(\dfrac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}-\dfrac{6+2\sqrt{6}}{\sqrt{3}+\sqrt{2}}=\dfrac{\sqrt{3}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}+\dfrac{2\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}=\sqrt{3}+2\sqrt{3}=3\sqrt{3}\)
Cho \(x=\dfrac{\sqrt[3]{4+\sqrt{15}}+\sqrt[3]{4-\sqrt{15}}+1}{2}\)
Tính \(P=12x^5+18x^4+4x^3-15x^2-21\)
chắc bạn chép sai đề rồi , hai căn đầu phải 1 cộng 1 trừ chứ
Đặt
\(x=\dfrac{y+1}{2}\Rightarrow y=2x-1\)
\(\Rightarrow y=\sqrt[3]{4+\sqrt{15}}+\sqrt[3]{4-\sqrt{15}}\)
\(y^3=8+3\sqrt[3]{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}=8+3y\)
\(\Rightarrow y^3-3y-8=0\\ \)
\(\Leftrightarrow8x^3-12x^2-6=0\)
\(\Rightarrow4x^3-6x^2-3=0\)
thay p vào ta có
\(P=12x^5-18x^4+4x^3-15x^2-21\)
\(=12x^5-18x^4-9x^2-4x^3-6x^2-21\)
\(=3x^2\left(4x^2-6x^2-3\right)+4x^3-6x^2-3\\ =3x^2.0+0-18\\ =-18\)
B1: rút gọn:
a, \(\sqrt{4-2\sqrt{3}}-\sqrt{3}\)
b, \(\sqrt{11+6\sqrt[]{2}}-3+\sqrt{2}\)
c, \(x-4+\sqrt{16-8x+x^2}\) với x > 4
d, \(\dfrac{x^2-5}{x+\sqrt{5}}\) x khác \(-\sqrt{5}\)
e, \(\dfrac{x^2+2\sqrt{2}x+2}{x+\sqrt{2}}\) x khác \(-\sqrt{2}\)
g, \(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\)
giúp em với ạ , em cảm ơn
a) \(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}=\sqrt{3}-1-\sqrt{3}=-1\)
b) \(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}=\sqrt{\left(3+\sqrt{2}\right)^2}-3+\sqrt{2}=3+\sqrt{2}-3+\sqrt{2}\)
\(=2\sqrt{2}\)
c) \(x-4+\sqrt{16-8x+x^2}=x-4+\sqrt{\left(x-4\right)^2}=x-4+\left|x-4\right|\)
\(=x-4+x-4\left(x>4\right)=2x-8\)
d) \(\dfrac{x^2-5}{x+\sqrt{5}}=\dfrac{\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)}{x+\sqrt{5}}=x-\sqrt{5}\)
e) \(\dfrac{x^2+2\sqrt{2}x+2}{x+\sqrt{2}}=\dfrac{\left(x+\sqrt{2}\right)^2}{x+\sqrt{2}}=x+\sqrt{2}\)
g) \(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}=\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}=\dfrac{1}{\sqrt{2}}\)
a) Ta có: \(\sqrt{4-2\sqrt{3}}-\sqrt{3}\)
\(=\sqrt{3}-1-\sqrt{3}\)
=-1
b) Ta có: \(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}\)
\(=3+\sqrt{2}-3+\sqrt{2}\)
\(=2\sqrt{2}\)
c) Ta có: \(x-4+\sqrt{x^2-8x+16}\)
\(=x-4+x-4=2x-8\)
d) Ta có: \(\dfrac{x^2-5}{x+\sqrt{5}}\)
\(=\dfrac{\left(x+\sqrt{5}\right)\left(x-\sqrt{5}\right)}{x+\sqrt{5}}\)
\(=x-\sqrt{5}\)
giải các phương trình sau:
\(1,\sqrt{18x}-6\sqrt{\dfrac{2x}{9}}=3-\sqrt{\dfrac{x}{2}}\)
\(2,\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\sqrt{27x}=-4\)
3, \(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)
\(4,\sqrt{16x+16}-\sqrt{9x+9}=1\)
\(5,\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)
\(6,\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=\dfrac{-2}{3}\)
2: ĐKXĐ: x>=0
\(\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\cdot\sqrt{27x}=-4\)
=>\(\sqrt{3x}-2\cdot2\sqrt{3x}+\dfrac{1}{3}\cdot3\sqrt{3x}=-4\)
=>\(\sqrt{3x}-4\sqrt{3x}+\sqrt{3x}=-4\)
=>\(-2\sqrt{3x}=-4\)
=>\(\sqrt{3x}=2\)
=>3x=4
=>\(x=\dfrac{4}{3}\left(nhận\right)\)
3:
ĐKXĐ: x>=0
\(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)
=>\(3\sqrt{2x}+5\cdot2\sqrt{2x}-20-3\sqrt{2}=0\)
=>\(13\sqrt{2x}=20+3\sqrt{2}\)
=>\(\sqrt{2x}=\dfrac{20+3\sqrt{2}}{13}\)
=>\(2x=\dfrac{418+120\sqrt{2}}{169}\)
=>\(x=\dfrac{209+60\sqrt{2}}{169}\left(nhận\right)\)
4: ĐKXĐ: x>=-1
\(\sqrt{16x+16}-\sqrt{9x+9}=1\)
=>\(4\sqrt{x+1}-3\sqrt{x+1}=1\)
=>\(\sqrt{x+1}=1\)
=>x+1=1
=>x=0(nhận)
5: ĐKXĐ: x<=1/3
\(\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)
=>\(2\sqrt{1-3x}+3\sqrt{1-3x}=10\)
=>\(5\sqrt{1-3x}=10\)
=>\(\sqrt{1-3x}=2\)
=>1-3x=4
=>3x=1-4=-3
=>x=-3/3=-1(nhận)
6: ĐKXĐ: x>=3
\(\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=-\dfrac{2}{3}\)
=>\(\sqrt{x-3}\cdot\left(\dfrac{2}{3}+\dfrac{1}{6}-1\right)=-\dfrac{2}{3}\)
=>\(\sqrt{x-3}\cdot\dfrac{-1}{6}=-\dfrac{2}{3}\)
=>\(\sqrt{x-3}=\dfrac{2}{3}:\dfrac{1}{6}=\dfrac{2}{3}\cdot6=\dfrac{12}{3}=4\)
=>x-3=16
=>x=19(nhận)
\(\dfrac{5}{3}\) \(\sqrt{15x}\)- \(\sqrt{15x}\) -2 = \(\dfrac{1}{3}\) \(\sqrt{15x}\)
\(ĐK:x\ge0\\ PT\Leftrightarrow\dfrac{5}{3}\sqrt{15x}-\sqrt{15x}-\dfrac{1}{3}\sqrt{15x}=2\\ \Leftrightarrow\sqrt{15x}\left(\dfrac{5}{3}-1-\dfrac{1}{3}\right)=2\\ \Leftrightarrow\dfrac{1}{3}\sqrt{15x}=2\Leftrightarrow\sqrt{15x}=6\Leftrightarrow15x=36\\ \Leftrightarrow x=\dfrac{12}{5}\left(tm\right)\)
\(\dfrac{5}{3}\sqrt{15x}-\sqrt{15x}-2=\dfrac{1}{3}\sqrt{15x}\)
\(ĐK:x\ge0\\ PT\Leftrightarrow\dfrac{2}{3}\sqrt{15x}-\dfrac{1}{3}\sqrt{15x}=2\\ \Leftrightarrow\dfrac{1}{3}\sqrt{15x}=2\Leftrightarrow\sqrt{15x}=6\\ \Leftrightarrow15x=36\Leftrightarrow x=\dfrac{12}{5}\left(tm\right)\)
Bài : Thu gọn
1) \(\dfrac{3\sqrt{5}-5\sqrt{3}}{\sqrt{15}-3}\)
2) \(\dfrac{\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{3}}\)
3) \(\dfrac{7+4\sqrt{3}}{2+\sqrt{3}}\)
4) \(\dfrac{16-6\sqrt{7}}{\sqrt{7}-3}\)
5) \(\dfrac{\left(\sqrt{3}-\sqrt{2}\right)^2+4\sqrt{6}}{\sqrt{3}+\sqrt{2}}\)
6) \(\dfrac{\left(\sqrt{3}+2\sqrt{5}\right)^2-8\sqrt{15}}{\sqrt{6-2\sqrt{10}}}\)
1.
\(\frac{3\sqrt{5}-5\sqrt{3}}{\sqrt{15}-3}=\frac{3\sqrt{5}-\sqrt{5}.\sqrt{15}}{\sqrt{15}-3}=\frac{-\sqrt{5}(\sqrt{15}-3)}{\sqrt{15}-3}=-\sqrt{5}\)
2.
\(\frac{\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{3}}=\frac{\sqrt{2+2\sqrt{2.3}+3}}{\sqrt{2}+\sqrt{3}}=\frac{\sqrt{(\sqrt{2}+\sqrt{3})^2}}{\sqrt{2}+\sqrt{3}}\)
\(=\frac{\sqrt{2}+\sqrt{3}}{\sqrt{2}+\sqrt{3}}=1\)
3.
\(\frac{7+4\sqrt{3}}{2+\sqrt{3}}=\frac{2^2+2.2\sqrt{3}+3}{2+\sqrt{3}}=\frac{(2+\sqrt{3})^2}{2+\sqrt{3}}=2+\sqrt{3}\)
4.
\(\frac{16-6\sqrt{7}}{\sqrt{7}-3}=\frac{3^2-2.3\sqrt{7}+7}{\sqrt{7}-3}=\frac{(\sqrt{7}-3)^2}{\sqrt{7}-3}=\sqrt{7}-3\)
5.
\(\frac{(\sqrt{3}-\sqrt{2})^2+4\sqrt{6}}{\sqrt{3}+\sqrt{2}}=\frac{3+2+2\sqrt{2.3}}{\sqrt{3}+\sqrt{2}}=\frac{(\sqrt{3}+\sqrt{2})^2}{\sqrt{3}+\sqrt{2}}=\sqrt{3}+\sqrt{2}\)
6.
\(=\frac{(\sqrt{3})^2+(2\sqrt{5})^2-2.\sqrt{3}.2\sqrt{5}}{\sqrt{6-2\sqrt{10}}}=\frac{(\sqrt{3}-2\sqrt{5})^2}{\sqrt{6-2\sqrt{10}}}\)
giải phương trình
a)\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
b)\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)
c)\(\sqrt{4x+20}+\sqrt{x+5}-\dfrac{1}{3}\sqrt{9x+45}=4\)
d)\(\dfrac{1}{3}\sqrt{2x}-\sqrt{8x}+\sqrt{18x}-10=2\)
a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow-2\sqrt{x-1}=-2\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)
\(\Leftrightarrow x=2\left(tm\right)\)
b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))
\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}=16\)
\(\Leftrightarrow\sqrt{x+1}=4\)
\(\Leftrightarrow x+1=16\)
\(\Leftrightarrow x=15\left(tm\right)\)