\(ĐK:x\ge0\\ PT\Leftrightarrow\dfrac{2}{3}\sqrt{15x}-\dfrac{1}{3}\sqrt{15x}=2\\ \Leftrightarrow\dfrac{1}{3}\sqrt{15x}=2\Leftrightarrow\sqrt{15x}=6\\ \Leftrightarrow15x=36\Leftrightarrow x=\dfrac{12}{5}\left(tm\right)\)
\(ĐK:x\ge0\\ PT\Leftrightarrow\dfrac{2}{3}\sqrt{15x}-\dfrac{1}{3}\sqrt{15x}=2\\ \Leftrightarrow\dfrac{1}{3}\sqrt{15x}=2\Leftrightarrow\sqrt{15x}=6\\ \Leftrightarrow15x=36\Leftrightarrow x=\dfrac{12}{5}\left(tm\right)\)
Tìm \(x\), biết :
a) \(\sqrt{\left(2x-1\right)^2}=3\)
b) \(\dfrac{5}{3}\sqrt{15x}-\sqrt{15x}-2=\dfrac{1}{3}\sqrt{15x}\)
Ai giải giúp mình với, mình xin cảm ơn:
1. Tìm x,biết: \(\sqrt{4x}-3\sqrt{x}+2\sqrt{15x}=18\)
2. Rút gọn: B=\(\dfrac{1}{\sqrt{11-2\sqrt{30}}}-\dfrac{3}{7-2\sqrt{10}}\)
3. Chứng minh rằng: \(8+2\sqrt{10+2\sqrt{5}}+8-2\sqrt{10+2\sqrt{5}}=\sqrt{2}\left(\sqrt{5}+1\right)\)
Q= \(\dfrac{3-\sqrt{x}}{5\sqrt{x}+7}+\dfrac{3\sqrt{x}+4}{3\sqrt{x}-2}-\dfrac{42\sqrt{x}+34}{15x+11\sqrt{x}-14}\)
a, Rút gọn
b, Tìm x sao cho Q ≤-\(\dfrac{2}{3}\)
c, Tìm các giá trị nguyên của x sao cho Q nhận giá trị nguyên
giải phương trình vô tỉ sau
1) \(\sqrt{9x^2-15x+9}+\sqrt{x^3+3x^2-3x+1}+x=2\)
2) \(4x^4+x^2+3x+4=3\sqrt[3]{16x^3+12x}\)
Thực hiến phép tính :
a, \(\dfrac{1}{3+\sqrt{2}}+\dfrac{1}{3-\sqrt{2}}\)
b, \(\dfrac{2}{3\sqrt{2}-4}-\dfrac{2}{3\sqrt{2}+4}\)
c, \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}\)
d, \(\dfrac{3}{2\sqrt{2}-3\sqrt{3}}-\dfrac{3}{2\sqrt{2}+3\sqrt{3}}\)
e, \(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
g, \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-6\sqrt{20}}}}\)
\(\dfrac{2}{\sqrt{5}-2}+\dfrac{2}{\sqrt{5}+2}\)
\(\dfrac{\sqrt{3}.\sqrt{5-2\sqrt{6}}}{\sqrt{3}-\sqrt{2}}-\dfrac{1}{2-\sqrt{3}}\)
giải phương trình vô tỉ sau
\(15x^2+2\left(x-1\right)\sqrt{x+2}=2x-5\)
Bài 1 Thực hiện các phép tính sau:
a) \(\dfrac{\sqrt{7}-5}{2}-\dfrac{6-2\sqrt{7}}{4}+\dfrac{6}{\sqrt{7}-2}-\dfrac{5}{4+\sqrt{7}}\)
b) \(\dfrac{2}{\sqrt{6}-2}+\dfrac{2}{\sqrt{6}+2}+\dfrac{5}{\sqrt{6}}\)
c) \(\dfrac{1}{\sqrt{3}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{\sqrt{3}}\sqrt{\dfrac{5}{12}-\dfrac{1}{\sqrt{6}}}\)
f) 2\(\sqrt{3-\sqrt{3+\sqrt{13+\sqrt{48}}}}\)
Rút gọn
A=\(\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-...-\dfrac{1}{\sqrt{24}-\sqrt{25}}\)
B=\(\dfrac{5}{4+\sqrt{11}}+\dfrac{11-3\sqrt{11}}{\sqrt{11}-3}-\dfrac{4}{\sqrt{5}-1}+\sqrt{\left(\sqrt{5}-2\right)^2}\)
C=\(\dfrac{\sqrt{x}+1}{x\sqrt[]{x}+x+\sqrt{x}}:\dfrac{1}{x^2-\sqrt{x}}\) (với x>0; x#1)
D=\(\dfrac{\sqrt{x^2-10x+25}}{x-5}\)