Chứng tỏ rằng:
a.0,(27)+0,(72)=1
b.0,(22)\(\times\dfrac{9}{2}=1\)
c.\(\left[0,\left(11\right).9\right]^{2003}=1\)
Bài 1: Chứng tỏ rằng:
\(\left(\dfrac{9}{11}-0.81\right)^{2003}=\left(\dfrac{9}{11}\right)^{2003}.\dfrac{1}{10^{4006}}\)
1) tính
a)\(\dfrac{27^{15}\times5^3\times8^4}{25^2\times81^{11}\times2^{11}}\)
b)\(\left(\dfrac{1}{25}-0,6\right)^2\div\dfrac{49}{125}+[\left(3\dfrac{1}{4}-6\dfrac{5}{9}\right)\times2\dfrac{2}{17}]\)
c)\(|1-\dfrac{2}{3}|-2\times\left(\dfrac{-209}{2009}\right)^0\)
a,
\(\dfrac{\left(3^3\right)^{15}.5^3.\left(2^3\right)^4}{\left(5^2\right)^2.\left(3^4\right)^{11}.2^{11}}=\dfrac{3^{45}.5^3.2^{12}}{5^4.3^{44}.2^{11}}=\dfrac{6}{5}\)
b, \(\left(-\dfrac{14}{25}\right)^2.\dfrac{125}{49}+\left(-3\dfrac{11}{36}\right).2\dfrac{2}{17}=\dfrac{4}{5}.\left(-7\right)=-\dfrac{28}{5}\)
c, \(\dfrac{1}{3}-2.1=-\dfrac{5}{3}\)
Chứng minh bất đẳng thức sau:
\(\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge\dfrac{9}{2}\left(a,b,c>0\right)\)
Áp dụng BĐT cosi:
\(\left(a+b+b+c+c+a\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\\ \ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\cdot3\sqrt[3]{\dfrac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=9\\ \Leftrightarrow2\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge9\\ \Leftrightarrow\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge\dfrac{9}{2}\left(đpcm\right)\)
Dấu \("="\Leftrightarrow a=b=c\)
Bài 27: Tính
a) \(\left(\dfrac{-1}{3}\right)^4\)
b)\(\left(\dfrac{-9}{4}\right)^3\)
c) \(\left(-0,2\right)^2\)
d) \(\left(-5,3\right)^0\)
a) \(=\dfrac{\left(-1\right)^4}{3^4}=\dfrac{1}{81}\)
b) \(=\dfrac{\left(-9\right)^3}{4^3}=\dfrac{-729}{64}\)
c) \(=\left(-\dfrac{2}{10}\right)^2=\left(-\dfrac{1}{5}\right)^2=\dfrac{1}{25}\)
d) \(=1\)
\(a,=\dfrac{1}{81}\\ b,=\dfrac{729}{64}\\ c,=0,04\\ d,=1\)
Chứng minh các bất đẳng thức :
a / \(\dfrac{a}{b}+\dfrac{b}{a}>=2;\forall a,b>0\)
b / \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}>=3;\forall a,b,c>0\)
c / \(\left(a+b\right)\left(b+c\right)+\left(c+a\right)>=8abc;\forall a,b,c>=0\)
d / \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)>=9,\forall a,b,c>0\)
e / \(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)+\left(1+\dfrac{c}{a}\right)>=8,\forall a,b,c>0\)
f / \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)>=4,\forall a,b,>0\)
HELP ME !!!!!!
a) Áp dụng BĐT AM - GM:
\(\dfrac{a}{b}+\dfrac{b}{a}\) >= 2\(\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}\) =2
Dấu '=' xảy ra <=> a=b=1
c) Áp dụng BĐT AM- GM a+b>= 2\(\sqrt{ab}\)
\(\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\) >= 8\(\sqrt{ab.bc.ca}\) = 8abc
Dấu '=' xảy ra <=> a=b=c
bài 1:chứng tỏ rằng pt có vô số nghiệm
a)\(\left(x+2\right)^2=x^2+4x+4\)
b)\(\left(3-x\right)^2=x^2-6x+9\)
bài 2:xét xem pt có tương đương k?
a)\(x+2=0\) và \(\dfrac{x}{x+2}=0\)
b)\(x^2+\dfrac{1}{x}=x+\dfrac{1}{x}\) và \(x^2+x=0\)
c)\(\left|x-1\right|=2\) và \(\left(x+1\right)\left(x-3\right)=0\)
d)\(x+5=0\) và \(\left(x+5\right)\left(x^2+1\right)=0\)
a, \(5^6\) : \(5^5\) + \(\left(\dfrac{4}{9}\right)^0\) b,\(\left(\dfrac{3}{7}\right)^{21}\) : \(\left(1-\dfrac{40}{49}\right)^3\) c, 3.\(\left(\dfrac{2}{3}\right)^3\) -\(\left(\dfrac{-52}{3}\right)^0\) +\(\dfrac{4}{9}\)
Mọi người giúp mình với
a) \(5^6:5^5+\left(\dfrac{4}{9}\right)^0=5^{6-5}+1=5+1=6\)
b) \(\left(\dfrac{3}{7}\right)^{21}:\left(1-\dfrac{40}{49}\right)^3\)
\(=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{9}{49}\right)^3\)
\(=\left(\dfrac{3}{7}\right)^{21}:\left[\left(\dfrac{3}{7}\right)^2\right]^3\)
\(=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{3}{7}\right)^6\)
\(=\left(\dfrac{3}{7}\right)^{21-6}=\left(\dfrac{3}{7}\right)^{15}\)
c) \(\left(\dfrac{2}{3}\right)^3-\left(\dfrac{-52}{3}\right)^0+\dfrac{4}{9}\)
\(=\dfrac{8}{27}-1+\dfrac{4}{9}\)
\(=\dfrac{8-27+12}{27}=-\dfrac{7}{27}\)
\(a)5^6:5^5+\left(\dfrac{4}{9}\right)^0=5^1+1=6\)
\(b,\left(\dfrac{3}{7}\right)^{21}:\left(1-\dfrac{40}{49}\right)^3\)
\(=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{49-40}{49}\right)^3\)
\(=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{9}{49}\right)^3=\left(\dfrac{3}{7}\right)^{21}:[\left(\dfrac{3}{7}\right)^2]^3\)
\(=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{3}{7}\right)^6=\left(\dfrac{3}{7}\right)^{21-6}\)
\(=\left(\dfrac{3}{7}\right)^{15}\)
\(c,3.\left(\dfrac{2}{3}\right)^3-\left(\dfrac{-52}{3}\right)^0+\dfrac{4}{9}\)
\(=3.\dfrac{8}{27}-1+\dfrac{4}{9}\)
\(=\dfrac{8}{9}-1+\dfrac{4}{9}\)
\(=\dfrac{8-9+4}{9}=\dfrac{1}{3}\)
a)\(2\dfrac{3}{3}.4.\left(-0,4\right)+1\dfrac{3}{5}.1,75+\left(-7,2\right):\dfrac{9}{11}\)
b)\(\left(\dfrac{1}{24}-\dfrac{5}{16}\right):\dfrac{-3}{8}+1^{10}.\left(-5\right)^0\)
a) Ta có: \(2\dfrac{3}{3}\cdot4\cdot\left(-0.4\right)+1\dfrac{3}{5}\cdot1.75+\left(-7.2\right):\dfrac{9}{11}\)
\(=-4.8+\dfrac{8}{5}\cdot\dfrac{7}{4}-\dfrac{36}{5}\cdot\dfrac{11}{9}\)
\(=\dfrac{-24}{5}+\dfrac{14}{5}-\dfrac{44}{5}\)
\(=\dfrac{-54}{5}\)
b) Ta có: \(\left(\dfrac{1}{24}-\dfrac{5}{16}\right):\dfrac{-3}{8}+1^{10}\cdot\left(-5\right)^0\)
\(=\left(\dfrac{2}{48}-\dfrac{15}{48}\right)\cdot\dfrac{8}{-3}+1\cdot1\)
\(=\dfrac{-13}{48}\cdot\dfrac{-8}{3}+1\)
\(=\dfrac{13}{18}+\dfrac{18}{18}=\dfrac{31}{18}\)
Kết quả học tập kì I của lớp 6A xếp thành 3 loại:giỏi,khá,trung bình.Số học sinh giỏi chiếm \(\dfrac{1}{3}\) số học sinh của lớp,số học sinh khá chiếm 40% số học sinh cả lớp,số học sinh trung bình là 12 em.Tính số học sinh lớp 6A và tỉ số phần trăm của học sinh giỏi so với học sinh cả lớp.
Tìm x,y biết:
a)\(\left|x-\dfrac{4}{11}\right|+\left|5+y\right|=0\)
b)\(\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|=\dfrac{-1}{4}-\left|y\right|\)
c)\(\left|x-y\right|+\left|\dfrac{9}{25}+y\right|=0\)
a) \(\left|x-\dfrac{4}{11}\right|+\left|5+y\right|=0\)
<=>\(\left[{}\begin{matrix}x-\dfrac{4}{11}=0\\5+y=0\end{matrix}\right.\) <=>\(\left[{}\begin{matrix}x=\dfrac{4}{11}\\y=-5\end{matrix}\right.\)
phần b, c tương tự