Cho pt: \(x^2-2\left(m+1\right)x+2m=0\). Pt này luôn có 2 nghiệm phân biệt \(x_1;x_2\) \(\forall m\). Tìm m để 2 nghiệm \(x_1;x_2\) thỏa mãn:
\(x_1^2=9x_2+10\) (với \(x_1\)≥ 4)
Cho pt: \(x^2-2\left(m+1\right)x+2m=0\). pt trình này luôn có 2 nghiệm phân biệt \(x_1;x_2\) với ∀m. Khi đó tìm m để 2 nghiệm \(x_1;x_2\) thỏa mãn: \(x_1^2=9x_2+10\) (với \(x_1\)≥ 4)
Cái này phân tích đề ra là lm được bạn nhé
cho \(x^2-2\left(m-1\right)x-2m=0\) (m tham số). CMR: PT luôn có 2 nghiệm phân biệt với mọi m. Gọi `x_1 ;x_2` là 2 nghiệm của PT, tìm tất cả giá trị m để \(x_1^2+x_1-x_2=5-2m\)
\(x^2-2\left(m-1\right)x-2m=0\)
\(\text{Δ}=\left(-2m+2\right)^2-4\cdot1\cdot\left(-2m\right)\)
\(=4m^2-8m+4+8m=4m^2+4>=4>0\forall m\)
=>Phương trình luôn có hai nghiệm phân biệt
Cho PT \(x^2-2\left(m+1\right)x+m^2+2m=0\) ( m là tham số). Tìm m để PT có 2 nghiệm phân biệt \(x_1;x_2\) ( với \(x_1< x_2\)) thảo mãn \(\left|x_1\right|=3\left|x_2\right|\)
|x1|=3|x2|
=>|2m+2-x2|=|3x2|
=>4x2=2m+2 hoặc -2x2=2m+2
=>x2=1/2m+1/2 hoặc x2=-m-1
Th1: x2=1/2m+1/2
=>x1=2m+2-1/2m-1/2=3/2m+3/2
x1*x2=m^2+2m
=>1/2(m+1)*3/2(m+1)=m^2+2m
=>3/4m^2+3/2m+3/4-m^2-2m=0
=>m=1 hoặc m=-3
TH2: x2=-m-1 và x1=2m+2+m+1=3m+3
x1x2=m^2+2m
=>-3m^2-6m-3-m^2-2m=0
=>m=-1/2; m=-3/2
Cho pt: \(mx^2-\left(2m+1\right)x+m+3=0\)
a) tìm m để pt trên có 2 nghiệm phân biệt ≠ 0
b) giả sử \(x_1;x_2\) là 2 nghiệm của pt trên. tìm m để:
\(\dfrac{mx_1^2+\left(2m+1\right)x_2+m+3}{m}+\dfrac{m}{mx_2^2+\left(2m+1\right)x_1+m+3}=2\)
a: \(\text{Δ}=\left(2m+1\right)^2-4m\left(m+3\right)\)
\(=4m^2+4m+1-4m^2-12m\)
\(=-8m+1\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
\(\Leftrightarrow-8m+1>0\)
\(\Leftrightarrow-8m>-1\)
hay \(m< \dfrac{1}{8}\)
Cho pt : \(x^2-2\left(m-1\right)x-2m+1=0\) .
Tìm m để pt có 2 nghiệm \(x_1,x_2\) phân biệt thỏa mãn \(2x_1-x_2=2\)
x1+x2=2m-2
2x1-x2=2
=>3x1=2m và 2x1-x2=2
=>x1=2m/3 và x2=4m/3-2
x1*x2=-2m+1
=>8/9m^2-4/3m+2m-1=0
=>8/9m^2+2/3m-1=0
=>8m^2+6m-9=0
=>m=3/4 hoặc m=-3/2
\(x^2-2\left(m-1\right)x-2m+1=0\left(1\right)\)
Để phương trình (1) có 2 nghiệm phân biệt thì:
\(\Delta>0\Rightarrow\left[2\left(m-1\right)\right]^2-4\left(-2m+1\right)>0\)
\(\Leftrightarrow4\left(m-1\right)^2+8m-4>0\)
\(\Leftrightarrow4m^2-8m+4+8m-4>0\)
\(\Leftrightarrow4m^2>0\Leftrightarrow m\ne0\)
Vậy với \(\forall m\ne0\) thì phương trình (1) có 2 nghiệm phân biệt.
Theo định lí Viete cho phương trình (1) ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-2m+1\end{matrix}\right.\)
Ta có \(2x_1-x_2=2\Rightarrow\left\{{}\begin{matrix}2\left(x_1+x_2\right)-2=3x_2\left(1'\right)\\\left(x_1+x_2\right)+2=3x_1\left(2'\right)\end{matrix}\right.\)
Lấy (1') nhân cho (2') ta được:
\(\left[2\left(x_1+x_2\right)-2\right]\left[\left(x_1+x_2\right)+2\right]=9x_1x_2\)
\(\Rightarrow\left[2.2\left(m-1\right)-2\right]\left[2\left(m-1\right)+2\right]=9\left(-2m+1\right)\)
\(\Leftrightarrow\left(4m-6\right).2m=-18m+9\)
\(\Leftrightarrow8m^2+6m-9=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{4}\\m=\dfrac{-3}{2}\end{matrix}\right.\)
Thử lại ta có m=3/4 hay m=-3/2
Cho pt: \(m^2-\left(2x+1\right)x+m+3=0\)
a). Tìm m để pt trên có 2 nghiệm phân biệt ≠ 0
b). giả xử \(x_1;x_2\) là 2 nghiệm của pt trên. Tìm m để:
\(\dfrac{mx_1^2+\left(2m+1\right)x_2+m+3}{m}+\dfrac{m}{mx_2^2+\left(2m+1\right)x_1+m+3}=2\)
cho pt: \(x^2-\left(2m-1\right)x+m^2-1=0\) (1)
a) tìm điều kiện của m để pt (1) có 2 nghiệm phân biệt
b) tìm m để 2 ngiệm \(x_1\), \(x_2\) của pt (1) t/m: \(\left(x_1-x_2\right)^2=x_1-3x_2\)
giúp mk vs mk cần gấp
a. Phương trình có 2 nghiệm phân biệt khi:
\(\Delta=\left(2m-1\right)^2-4\left(m^2-1\right)=5-4m>0\)
\(\Rightarrow m< \dfrac{5}{4}\)
b. Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=m^2-1\end{matrix}\right.\)
\(\left(x_1-x_2\right)^2=x_1-3x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=x_1-3x_2\)
\(\Leftrightarrow\left(2m-1\right)^2-4\left(m^2-1\right)=x_1-3x_2\)
\(\Leftrightarrow x_1-3x_2=5-4m\)
Kết hợp hệ thức Viet ta được: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1-3x_2=5-4m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2m-1\\4x_2=6m-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+1}{2}\\x_2=\dfrac{3m-3}{2}\end{matrix}\right.\)
Thế vào \(x_1x_2=m^2-1\)
\(\Rightarrow\left(\dfrac{m+1}{2}\right)\left(\dfrac{3m-3}{2}\right)=m^2-1\)
\(\Leftrightarrow m^2-1=0\Rightarrow m=\pm1\) (thỏa mãn)
1) Cho pt \(5x^2-7x+1=0\)
a) C minh pt có 2 nghiệm phân biệt \(x_1,x_2\)
b) Tính giá trị biểu thức \(A=\left(x_1-\dfrac{7}{5}\right)x_1+\dfrac{1}{25x^2_2}+x^2_2\)
2) Cho pt \(x^2-4+1-2m=0\) (x là ẩn số)
a) tìm m để pt có nghiệm
b) tìm m để 2 nghiệm \(x_1,x_2\) của pt thỏa \(x^2_1+x^2_2=6\)
`1)`
$a\big)\Delta=7^2-5.4.1=29>0\to$ PT có 2 nghiệm pb
$b\big)$
Theo Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{7}{5}\\x_1x_2=\dfrac{1}{5}\end{matrix}\right.\)
\(A=\left(x_1-\dfrac{7}{5}\right)x_1+\dfrac{1}{25x_2^2}+x_2^2\\ \Rightarrow A=\left(x_1-x_1-x_2\right)x_1+\left(\dfrac{1}{5}\right)^2\cdot\dfrac{1}{x_2^2}+x_2^2\\ \Rightarrow A=-x_1x_2+\left(x_1x_2\right)^2\cdot\dfrac{1}{x_2^2}+x_2^2\)
\(\Rightarrow A=-x_1x_2+x_1^2+x_2^2\\ \Rightarrow A=\left(x_1+x_2\right)^2-3x_1x_2\\ \Rightarrow A=\left(\dfrac{7}{5}\right)^2-3\cdot\dfrac{1}{5}=\dfrac{34}{25}\)
B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)
a. Tìm m để (1) có 2 nghiệm dương
b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyên
B2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)
a. Tìm m để (1) có 2 nghiệm trái dấu
b. Tìm m để nghiệm này bằng bình phương nghiệm kia
B3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)
a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)
b. Tìm m để A=\(x_1^2+x_2^2-3x_1x_2\)đạt GTLN
B4: Cho pt \(x^2+\left(2m+3\right)x+3m+11=0\). Tìm m để pt có 2 nghiệm \(x_1,x_2\ne0\)thỏa mãn \(|\frac{1}{x_1}-\frac{1}{x_2}|=\frac{1}{2}\)
B5: cho 2 đường thẳng \(\left(d_1\right):y=\left(m-1\right)x-m^2-m\)và \(\left(d_2\right):y=\left(m-2\right)x-m^2-2m+1\)
a. Xđ tọa độ giao điểm của \(d_1\)và \(d_2\)(điểm G)
b. cmr điểm G thuộc 1 đường thẳng cố định khi m thay đổi
B6: cho pt \(2x^2-4mx+2m^2-1=0\)(1)
a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)
b. tìm m để pt (1) có 2 nghiệm thỏa mãn \(2x_1^2+4mx_2+2m^2-1>0\)
B7: cho pt \(x^2-2mx-16+5m^2=0\)(1)
a. tìm m để (1) có nghiệm
b. gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm GTLN và GTNN của biểu thức A=\(x_1\left(5x_1+3x_2-17\right)+x_2\left(5x_2+3x_1-17\right)\)