Những câu hỏi liên quan
Quốc Khánh
Xem chi tiết
nguyen thi vang
10 tháng 2 2021 lúc 0:42

Xét hiệu VT - VP

\(\dfrac{a+b}{bc+a^2}+\dfrac{b+c}{ab+b^2}+\dfrac{c+a}{ab+c^2}-\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}=\dfrac{a^2+ab-bc-a^2}{a\left(bc+a^2\right)}+\dfrac{b^2+bc-ac-b^2}{b\left(ac+b^2\right)}+\dfrac{c^2+ac-ab-c^2}{c\left(ab+c^2\right)}=\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}+\dfrac{c\left(b-a\right)}{b\left(ac+b^2\right)}+\dfrac{a\left(c-b\right)}{c\left(ab+c^2\right)}\)

Do a,b,c bình đẳng nên giả sử a\(\ge\)b\(\ge\)c, khi đó \(b\left(a-c\right)\)\(\ge\)0, c(b-a)\(\le\)0, a(c-b)\(\le\)0

\(a^3\ge b^3\ge c^3=>abc+a^3\ge abc+b^3\ge abc+c^3\)=>\(\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}\le\dfrac{b\left(a-c\right)}{b\left(ac+b^2\right)}\)

=> VT -VP \(\le\) \(\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}+\dfrac{c\left(b-a\right)}{b\left(ac+b^2\right)}+\dfrac{a\left(c-b\right)}{c\left(ab+c^2\right)}=\dfrac{ab-ac}{b\left(ac+b^2\right)}+\dfrac{ac-ab}{c\left(ab+c^2\right)}=\dfrac{a\left(b-c\right)}{b\left(ac+b^2\right)}-\dfrac{a\left(b-c\right)}{c\left(ab+c^2\right)}\)

mà \(\dfrac{1}{b\left(ac+b^2\right)}\le\dfrac{1}{c\left(ab+c^2\right)}\) nên VT-VP <0 đpcm

 

tthnew
10 tháng 2 2021 lúc 15:40

Ta viết bất đẳng thức đã cho lại thành

\(\sum\left[\dfrac{1}{c}-\dfrac{\left(a+b+2c\right)}{2\left(ab+c^2\right)}\right]\ge\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a^2+b^2+c^2\right)}{2\prod\left(ab+c^2\right)}\)

\(\Leftrightarrow\sum\dfrac{c\left(a^2+ab+b^2\right)\left(a-b\right)^2}{ab\left(a^2+bc\right)\left(b^2+ca\right)}\ge\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a^2+b^2+c^2\right)}{\prod\left(ab+c^2\right)}\)

Hay \(S_a\left(b-c\right)^2+S_b\left(c-a\right)^2+S_c\left(a-b\right)^2\ge\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a^2+b^2+c^2\right)}{\prod\left(ab+c^2\right)}\quad\left(1\right)\)

Vậy $VT\geq 0$ và $S_a+S_b\ge 0;S_b+S_c\ge 0.$ Nếu \(a\ge b\ge c\rightarrow VT\ge0\ge VP,\) ta chỉ xét \(a\le b\le c.\)

\(\left(1\right)\Leftrightarrow\left(S_a+S_b\right)\left(b-c\right)^2+\left(S_b+S_c\right)\left(a-b\right)^2\ge\left[\dfrac{\left(c-a\right)\left(a^2+b^2+c^2\right)}{\prod\left(ab+c^2\right)}-2S_b\right]\left(a-b\right)\left(b-c\right)\)

Đặt \(c=a+x+y,b=a+x\Rightarrow x=b-a;y=c-b\left(x,y\ge0\right)\) thay vào rút gọn các thứ là đpcm.

P/s: Cách này khá trâu nhưng chịu thôi, bài này mình nghĩ khá chặt.

Thai Nguyen
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
14 tháng 8 2018 lúc 10:38

Bạn tham khảo cách chứng minh tại đây :

Câu hỏi của Nguyễn Huy Thắng - Toán lớp 10 | Học trực tuyến

Áp dụng : Theo BĐT \(AM-GM\) ta có :

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)

Nhân vế theo vế ta được :

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=3.3.1=9\)

Dấu \("="\) xảy ra khi \(a=b=c\)

ha nguyen
Xem chi tiết
blua
10 tháng 8 2023 lúc 21:28

tử vế phải là 3 hay 2 vậy bạn.

Nhi@
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 8 2023 lúc 21:41

a,b,c là các số dương nên \(\left(a+b+c\right)>=3\cdot\sqrt[3]{abc}\)

\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)>=3\cdot\sqrt[3]{\dfrac{1}{a}\cdot\dfrac{1}{b}\cdot\dfrac{1}{c}}\)

Do đó: \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)>=3\cdot\sqrt[3]{abc}\cdot3\cdot\sqrt[3]{\dfrac{1}{a}\cdot\dfrac{1}{b}\cdot\dfrac{1}{c}}=9\cdot\sqrt[3]{a\cdot b\cdot c\cdot\dfrac{1}{a}\cdot\dfrac{1}{b}\cdot\dfrac{1}{c}}=9\)

Phùng Minh Phúc
Xem chi tiết
ILoveMath
22 tháng 1 2022 lúc 21:41

Coi như a, b, c là số dương

Áp dụng BĐT Cô-si ta có:

\(\dfrac{a}{bc}+\dfrac{c}{ba}\ge2\sqrt{\dfrac{a}{bc}.\dfrac{c}{ba}}=2\sqrt{\dfrac{1}{b^2}}=\dfrac{2}{b}\left(1\right)\)

Dấu "=" xảy ra ...

\(\dfrac{a}{bc}+\dfrac{b}{ac}\ge2\sqrt{\dfrac{a}{bc}.\dfrac{b}{ac}}=2\sqrt{\dfrac{1}{c^2}}=\dfrac{2}{c}\left(2\right)\)

Dấu "=" xảy ra ...

\(\dfrac{c}{ba}+\dfrac{b}{ac}\ge2\sqrt{\dfrac{c}{ba}+\dfrac{b}{ac}}=2\sqrt{\dfrac{1}{a^2}}=\dfrac{2}{a}\left(3\right)\)

Dấu "=" xảy ra ...

Từ (1), (2), (3) ta có:

\(\dfrac{a}{bc}+\dfrac{c}{ba}+\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}+\dfrac{b}{ac}\ge\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\\ \Rightarrow2\left(\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}\right)\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\\ \Rightarrow\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

Dấu "=" xảy ra ...

Vậy ...

ILoveMath
22 tháng 1 2022 lúc 21:35

a, b, c có phải là số dương không bạn, nếu không thì làm sao dùng BĐT Cô-si được

Nguyễn Thị Lan Anh
Xem chi tiết
Đức Minh
23 tháng 4 2017 lúc 17:20

c) Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có :

\(\dfrac{1}{A}+\dfrac{1}{B}+\dfrac{1}{C}\ge\dfrac{\left(1+1+1\right)^2}{A+B+C}=\dfrac{9}{A+B+C}\)

Dấu "=" xảy ra khi và chỉ khi\(\dfrac{1}{A}=\dfrac{1}{B}=\dfrac{1}{C}\)

socola Lê
Xem chi tiết
Thảo Nguyễn
Xem chi tiết
Neet
23 tháng 9 2017 lúc 0:13

Hay 1 cách khác :AM-GM

\(\dfrac{b}{a^2}+\dfrac{c}{a^2}+\dfrac{1}{b}+\dfrac{1}{c}\ge4\sqrt[4]{\dfrac{1}{a^4}}=\dfrac{4}{a}\)

Tương tự là ta có ngay đpcm

Neet
23 tháng 9 2017 lúc 0:08

Một cách đơn giản nhất tương đương ( hay còn gọi là SOS)

\(BĐT\Leftrightarrow\sum\dfrac{b+c-2a}{a^2}\ge0\)

\(\Leftrightarrow\sum\left(\dfrac{b-a}{a^2}+\dfrac{c-a}{a^2}\right)\ge0\)

Nhóm lại: \(\Leftrightarrow\sum\left(\dfrac{a-b}{b^2}+\dfrac{b-a}{a^2}\right)\ge0\)

\(\Leftrightarrow\sum\left(a-b\right)^2.\left(\dfrac{a+b}{a^2b^2}\right)\ge0\)(đúng)

Vậy BĐT được chứng minh.

Dấu = xảy ra khi a=b=c

Thai Nguyen
Xem chi tiết
Nguyễn Xuân Tiến 24
10 tháng 8 2018 lúc 19:44

Ta có: \(\left(a-b\right)^2\ge0\Rightarrow a^2-ab+b^2\ge ab\)

Nhân hai vế của phương trình với \(a+b>0\) ta có:

\(\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)Áp dụng kết quả trên ta có:

\(A=\dfrac{1}{a^3+b^3+1}+\dfrac{1}{b^3+c^3+1}+\dfrac{1}{c^3+a^3+1}\le\)

\(\le\dfrac{1}{ab\left(a+b\right)+abc}+\dfrac{1}{bc\left(b+c\right)+abc}+\dfrac{1}{ca\left(c+a\right)+abc}=\)(vì abc=1)

\(=\dfrac{1}{ab\left(a+b+c\right)}+\dfrac{1}{bc\left(a+b+c\right)}+\dfrac{1}{ca\left(a+b+c\right)}=\dfrac{a+b+c}{abc\left(a+b+c\right)}=1\)