Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Châu Mỹ Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 5 2021 lúc 13:44

Câu 1:

Sửa đề: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

Ta có: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{1}{\sqrt{x}+3}\right):\left(\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=1\)

Nguyễn Lê Phước Thịnh
5 tháng 5 2021 lúc 13:46

Câu 3: 

Ta có: \(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)

\(=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-2\right)^2}\)

\(=\dfrac{a+\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-2}{1}\)

\(=\sqrt{a}\left(\sqrt{a}-2\right)\)

\(=a-2\sqrt{a}\)

Nguyễn Thị Thu Phương
Xem chi tiết
Trên con đường thành côn...
9 tháng 8 2021 lúc 20:05

undefined

BTS FOREVER
Xem chi tiết
An Thy
14 tháng 7 2021 lúc 19:55

\(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{x-\sqrt{x}+6}{x+\sqrt{x}-2}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{x-\sqrt{x}-2}{x+\sqrt{x}-2}\right)\left(x\ge0,x\ne1\right)\)

\(=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{x-\sqrt{x}+6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\dfrac{\sqrt{x}+2+x-\sqrt{x}+6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}:\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)+x-\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x+8}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}:\dfrac{2x-\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x+8}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{2x-\sqrt{x}-3}=\dfrac{x+8}{2x-\sqrt{x}-3}\)

 

Nguyễn Huy Tú
14 tháng 7 2021 lúc 19:59

undefined

Nguyễn Lê Phước Thịnh
14 tháng 7 2021 lúc 22:40

Ta có: \(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{x-\sqrt{x}+6}{x+\sqrt{x}-2}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{x-\sqrt{x}-2}{x+\sqrt{x}-2}\right)\)

\(=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{x-\sqrt{x}+6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\dfrac{\sqrt{x}+2+x-\sqrt{x}+6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}:\dfrac{x-1+x-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x+8}{2x-\sqrt{x}-3}\)

 

Hải Đăng Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 8 2023 lúc 21:59

1: \(=\left(1+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)

\(=\dfrac{\sqrt{x}-1+\sqrt{x}}{\sqrt{x}-1}:\dfrac{x-9+x-4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{2x+\sqrt{x}-11}\)

\(=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(2x+\sqrt{x}-11\right)}\)

2: \(=\dfrac{x-1-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(x-1\right)}:\dfrac{\sqrt{x}+1-2}{x-1}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(x-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{x-1}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

Bống
Xem chi tiết
Nguyễn Hoàng Minh
27 tháng 10 2021 lúc 20:48

\(ĐK:x>0;x\ne1\\ A=\dfrac{2+x-1-x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}+1}\\ A=\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}+1}=\dfrac{\left(1-\sqrt{x}\right)\left(2-\sqrt{x}\right)}{\sqrt{x}+1}\)

Nguyễn Lê Phước Thịnh
27 tháng 10 2021 lúc 20:48

\(A=\left(\dfrac{2+x-1-x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\cdot\dfrac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}+1}\)

\(=\dfrac{-\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\cdot\dfrac{2-\sqrt{x}}{\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)

Ngọc Hà
Xem chi tiết
santa
28 tháng 12 2020 lúc 17:00

1) \(\dfrac{1}{\sqrt{3}+1}+\dfrac{1}{\sqrt{3}-1}-2\sqrt{3}=\dfrac{\sqrt{3}-1+\sqrt{3}+1}{3-1}-2\sqrt{3}=\sqrt{3}-2\sqrt{3}=-\sqrt{3}\)

+) \(ĐKXĐ:\left\{{}\begin{matrix}x>0\\x\ne1\\x\ne4\end{matrix}\right.\)

\(P=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)

\(P=\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(P=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\)

\(P=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)

2) \(\sqrt{3-2\sqrt{2}}+\dfrac{1}{\sqrt{2}-1}=\sqrt{2}-1+\sqrt{2}+1=2\sqrt{2}\)

+) \(ĐKXĐ:\left\{{}\begin{matrix}a>0\\a\ne4\end{matrix}\right.\)

\(M=\left(\dfrac{\sqrt{a}}{\sqrt{a}-2}+\dfrac{\sqrt{a}}{\sqrt{a}+2}\right)\cdot\dfrac{a-4}{\sqrt{4a}}\)

\(M=\dfrac{a+2\sqrt{a}+a-2\sqrt{a}}{a-4}\cdot\dfrac{a-4}{2\sqrt{a}}\)

\(M=\dfrac{2a}{2\sqrt{a}}=\sqrt{a}\)

+) \(ĐKXĐ:\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

\(N=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+3}+\dfrac{\sqrt{x}-3}{2-\sqrt{x}}+\dfrac{\sqrt{x}-2}{x+\sqrt{x}-6}\right)\)

\(N=\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}:\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)

\(N=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-4-x+9+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(N=\dfrac{1}{\sqrt{x}+1}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\sqrt{x}+3}\)

\(N=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)

+) \(ĐKXĐ:\left\{{}\begin{matrix}x\ge0\\x\ne9\\x\ne4\end{matrix}\right.\)

 \(Q=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}+\dfrac{\sqrt{x}+3}{2-\sqrt{x}}\right)\)

\(Q=\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}:\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\right)\)

\(Q=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-4+\sqrt{x}-8-x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(Q=\dfrac{1}{\sqrt{x}+1}\cdot\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\sqrt{x}-3}\)

\(Q=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)

p/s: sorry tại n' câu wa nên mình ko làm chi tiết đc =(( lần sau nhớ chia các câu ra cho dễ nhìn hơn nha, đánh hơi mỏi tay :'( có j ko hỉu cmt dưới nha

 

Lê Thu Thảo
Xem chi tiết
Nguyễn Huy Tú
25 tháng 7 2021 lúc 15:12

ĐK : \(x\ge0;x\ne4;9\)

\(\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)

\(=\left(\dfrac{1}{\sqrt{x}+1}\right):\left(\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)

\(=\dfrac{1}{\sqrt{x}+1}:\dfrac{1}{\sqrt{x}-2}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)

 

Nguyễn Lê Phước Thịnh
25 tháng 7 2021 lúc 21:15

Ta có: \(\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)

\(=\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}:\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{1}{\sqrt{x}+1}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)

minh ngọc
Xem chi tiết
Gấuu
10 tháng 8 2023 lúc 9:49

a) Đk: \(x>0;x\ne9;x\ne25\)

Đặt \(A=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{2x}{9-x}\right):\left(\dfrac{\sqrt{x}-1}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)

\(=\left[\dfrac{\sqrt{x}\left(3-\sqrt{x}\right)}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}+\dfrac{2x}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right]\)\(:\left[\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\right]\)

\(=\dfrac{\sqrt{x}\left(3-\sqrt{x}\right)+2x}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}:\dfrac{\sqrt{x}-1-2\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\dfrac{3\sqrt{x}+x}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}:\dfrac{-\sqrt{x}+5}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\sqrt{x}\left(3+\sqrt{x}\right)}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}.\dfrac{\sqrt{x}\left(3-\sqrt{x}\right)}{\sqrt{x}-5}\)

\(=\dfrac{x}{\sqrt{x}-5}\)

Gấuu
10 tháng 8 2023 lúc 9:55

b) Đk: \(x\ge0;x\ne1;x\ne25\)

Biểu thức

\(=\left[\dfrac{\sqrt{x}-2}{\sqrt{x}+5}+\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{x+9}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\right]:\dfrac{1-\sqrt{x}}{5+\sqrt{x}}\)

\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-5\right)+\sqrt{x}\left(\sqrt{x}+5\right)-x-9}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}.\dfrac{\sqrt{x}+5}{1-\sqrt{x}}\)

\(=\dfrac{x-7\sqrt{x}+10+x+5\sqrt{x}-x-9}{\left(\sqrt{x}-5\right)\left(1-\sqrt{x}\right)}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-5\right)\left(1-\sqrt{x}\right)}\)\(=\dfrac{\left(1-\sqrt{x}\right)^2}{\left(\sqrt{x}-5\right)\left(1-\sqrt{x}\right)}=\dfrac{1-\sqrt{x}}{\sqrt{x}-5}\)

Gấuu
10 tháng 8 2023 lúc 10:01

Đk: \(x>0;x\ne4\)

Biểu thức:

\(=\left[\dfrac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{1}{\left(\sqrt{x}-2\right)^2}\right].\dfrac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}}\)

\(=\left[\dfrac{-1}{\left(2-\sqrt{x}\right)\left(\sqrt{x}+2\right)}-\dfrac{1}{\left(2-\sqrt{x}\right)^2}\right].\left(2-\sqrt{x}\right)\)

\(=-\dfrac{1}{\sqrt{x}+2}-\dfrac{1}{2-\sqrt{x}}\)

\(=\dfrac{-\left(2-\sqrt{x}\right)-\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(2-\sqrt{x}\right)}=\dfrac{-4}{4-x}\)\(=\dfrac{4}{x-4}\)

Khoảng cách hai ta là 100 bước, em bước 100, anh lùi 1 

Dung Vu
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 11 2021 lúc 14:52

\(a,C=\dfrac{2x^2-x-x-1+2-x^2}{x-1}\left(x\ne1\right)\\ C=\dfrac{x^2-2x+1}{x-1}=\dfrac{\left(x-1\right)^2}{x-1}=x-1\\ b,D=\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\left(a>0;a\ne1\right)\\ D=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

Có 

Ngọc Mai
Xem chi tiết
Ngọc Mai
5 tháng 8 2021 lúc 12:20

giúp mình với ạ