Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Mai
Xem chi tiết
Nhật Minh
16 tháng 6 2017 lúc 21:06

\(\sqrt{a^2+ab+b^2}=\sqrt{\left(a+b\right)^2-ab}\ge\sqrt{\left(a+b\right)^2-\dfrac{\left(a+b\right)^2}{4}}=\sqrt{\dfrac{3}{4}\left(a+b\right)^2}=\dfrac{\sqrt{3}\left(a+b\right)}{2}.\)

Tương tự

=> P \(\ge\dfrac{\sqrt{3}}{2}.2\left(a+b+c\right)=\sqrt{3}.\)

Vậy \(Pmin=\sqrt{3}\) khi a =b=c = 1/3

hiền nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 4 2023 lúc 23:15

\(\dfrac{1}{\sqrt{a^2-ab+b^2}}< =\dfrac{1}{\sqrt{2ab-ab}}=\dfrac{1}{\sqrt{ab}}\)

\(\sqrt{\dfrac{1}{b^2-bc+c^2}}< =\dfrac{1}{\sqrt{bc}};\sqrt{\dfrac{1}{c^2-ac+c^2}}< =\dfrac{1}{\sqrt{ac}}\)

=>P<=1/a+1/b+1/c=3

Dấu = xảy ra khi a=b=c=1

Hi Mn
Xem chi tiết
đấng ys
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 1 2022 lúc 20:22

Em tham khảo ở đây:

Cho a,b,c > 0 và ab + bc + ac = 1. Chứng minh rằng :\(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^... - Hoc24

Anh Phạm Xuân
Xem chi tiết
Tinh Lãm
14 tháng 10 2018 lúc 21:24

Ta có: bc(a2+1) = (a+b)(a+c)

\(\Rightarrow\) \(\dfrac{a}{\sqrt{bc\left(1+a^2\right)}}\) =\(\sqrt{\dfrac{a}{a+b}}.\sqrt{\dfrac{a}{a+c}}\)

Áp dụng BĐT Cô-si: \(\sqrt{\dfrac{a}{a+b}}.\sqrt{\dfrac{a}{a+c}}\) \(\le\) \(\dfrac{1}{2}\left(\dfrac{a}{b+c}+\dfrac{a}{a+c}\right)\)

\(\Rightarrow\) \(\dfrac{a}{\sqrt{bc\left(1+a^2\right)}}\) \(\le\) \(\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\)

CMTT: \(\dfrac{b}{\sqrt{ac\left(1+b^2\right)}}\) \(\le\) \(\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{b}{a+c}\right)\)

\(\dfrac{c}{\sqrt{ab\left(1+c^2\right)}}\) \(\le\) \(\dfrac{1}{2}\left(\dfrac{c}{a+c}+\dfrac{c}{c+b}\right)\)

\(\Rightarrow\) S \(\le\) \(\dfrac{1}{2}\left(\dfrac{a}{b+a}+\dfrac{a}{c+a}+\dfrac{b}{a+b}+\dfrac{b}{c+b}+\dfrac{c}{a+c}+\dfrac{c}{b+c}\right)\)

\(\Rightarrow\) S\(\le\) \(\dfrac{1}{2}.3=\dfrac{3}{2}\)

Vậy Smax = \(\dfrac{3}{2}\)

Dấu "=" xảy ra\(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=b=c\\a+b+c=abc\end{matrix}\right.\)

\(\Leftrightarrow\) \(a=b=c=\sqrt{3}\)

Yeutoanhoc
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 5 2021 lúc 23:06

1 bài Mincopxki khá quen:

\(P\ge\sqrt{\left(a+b+c\right)^2+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}\ge\sqrt{\left(a+b+c\right)^2+\dfrac{81}{\left(a+b+c\right)^2}}\)

Đến đây thì nó là bài Cô-si có biên, cứ tách ghép theo điểm rơi là được:

\(P\ge\sqrt{\left(a+b+c\right)^2+\dfrac{81}{16\left(a+b+c\right)^2}+\dfrac{1215}{16\left(a+b+c\right)^2}}\)

\(P\ge\sqrt{2\sqrt{\dfrac{81\left(a+b+c\right)^2}{16\left(a+b+c\right)^2}}+\dfrac{1215}{16.\left(\dfrac{3}{2}\right)^2}}=\dfrac{3\sqrt{17}}{2}\)

Dấu "=" xayr a khi \(a=b=c=\dfrac{1}{2}\)

an nam
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 4 2022 lúc 14:26

Với mọi số thực dương x;y;z ta có:

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)

\(\Leftrightarrow3x^2+3y^2+3z^2\ge x^2+y^2+z^2+2xy+2yz+2zx\)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

\(\Leftrightarrow x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}\)

Áp dụng:

a.

\(\sqrt{a+2}+\sqrt{b+2}+\sqrt{c+2}\le\sqrt{3\left(a+2+b+2+c+2\right)}=\sqrt{3\left(21+6\right)}=9\)

b.

\(\sqrt{a+b+2}+\sqrt{b+c+2}+\sqrt{c+a+2}\le\sqrt{3\left(a+b+2+b+c+2+c+a+2\right)}\)

\(\Rightarrow\sqrt{a+b+2}+\sqrt{b+c+2}+\sqrt{c+a+2}\le\sqrt{6\left(a+b+c\right)+18}=\sqrt{6.21+18}=12\)

Dấu "=" xảy ra khi \(a=b=c=7\)

Hiếu Minh
Xem chi tiết
Nguyễn Hoàng Minh
29 tháng 11 2021 lúc 20:49

\(1,yz\sqrt{x-1}=yz\sqrt{\left(x-1\right)\cdot1}\le yz\cdot\dfrac{x-1+1}{2}=\dfrac{xyz}{2}\)

\(zx\sqrt{y-2}=\dfrac{zx\cdot2\sqrt{2\left(y-2\right)}}{2\sqrt{2}}\le\dfrac{xyz}{2\sqrt{2}}\\ xy\sqrt{z-3}=\dfrac{xy\cdot2\sqrt{3\left(z-3\right)}}{2\sqrt{3}}\le\dfrac{xyz}{2\sqrt{3}}\)

\(\Leftrightarrow M\le\dfrac{\dfrac{xyz}{2}+\dfrac{xyz}{2\sqrt{2}}+\dfrac{xyz}{2\sqrt{3}}}{xyz}=\dfrac{xyz\left(\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\right)}{xyz}=\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=2\\z-3=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\\z=6\end{matrix}\right.\)

Nguyễn Hoàng Minh
29 tháng 11 2021 lúc 20:52

\(2,N^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\\ \Leftrightarrow N^2\le\left(a+b+b+c+c+a\right)\left(1^2+1^2+1^2\right)\\ \Leftrightarrow N^2\le6\left(a+b+c\right)=6\sqrt{2}\\ \Leftrightarrow N\le\sqrt{6\sqrt{2}}\)

Dấu \("="\Leftrightarrow a=b=c=\dfrac{\sqrt{2}}{3}\)

hello7156
Xem chi tiết
Nguyễn Hoàng Minh
22 tháng 12 2021 lúc 14:45

Ta có \(\sqrt{bc\left(1+a^2\right)}=\sqrt{bc+a^2bc}=\sqrt{bc+a\left(a+b+c\right)}\)

\(=\sqrt{\left(a+b\right)\left(a+c\right)}\)

Đặt BT đề cho là P

\(\Leftrightarrow P=\sum\dfrac{a}{\sqrt{bc\left(1+a^2\right)}}=\sum\sqrt{\dfrac{a}{a+b}\cdot\dfrac{a}{a+c}}\\ \Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{b+c}+\dfrac{b}{b+a}+\dfrac{c}{c+a}+\dfrac{c}{c+b}\right)\\ \Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{1}{2}\cdot3=\dfrac{3}{2}\)

Dấu \("="\Leftrightarrow a=b=c=\sqrt{3}\)