Giải bptr:
(x-3)căn (x2-4)<= x2-9
Giai bptr sau
\(\dfrac{6x+5}{4}-\dfrac{x-3}{2}< \dfrac{6x-1}{3}+\dfrac{7x-1}{12}\)
cho X^2-2mx+4=0 có 2 nghiệm x1,x1 ko giải PT tính Căn bậc 3 x1 + căn bặc 3 x2
Gỉai bptr sau:
a,\(\dfrac{x-5}{4}-\dfrac{2x-1}{2}< 3\)
b,\(\dfrac{5x^2-3}{5}+\dfrac{3x-1}{4}>\dfrac{x\left(2x+3\right)}{2}-5\)
a: \(\Leftrightarrow x-5-2\left(2x-1\right)< 12\)
=>x-5-4x+2<12
=>-3x-3<12
=>-3x<15
hay x>-5
b: \(\Leftrightarrow4\left(5x^2-3\right)+5\left(3x-1\right)>10x\left(2x+3\right)-100\)
\(\Leftrightarrow20x^2-12+15x-5-20x^2-30x+100>0\)
=>-15x+83>0
hay x<83/15
Giaỉ bptr sau
\(\dfrac{3x-2}{4}-x< \dfrac{x+2}{5}\)
\(\dfrac{3x-2}{4}-x< \dfrac{x+2}{5}\\ \Leftrightarrow\dfrac{5\left(3x-2\right)}{20}-\dfrac{20x}{20}-\dfrac{4\left(x+2\right)}{20}< 0\\ \Leftrightarrow15x-10-20x-4x-8< 0\\ \Leftrightarrow-9x-18< 0\\ \Leftrightarrow-9x< 18\\ \Leftrightarrow x>-2\)
Giải hộ e bài này với ai 👍
Câu 1 : a, 4x2 -3x-1=0 / d, 4x4-5x2+1=0
b, x2 - (1+căn 5)x + căn 5= 0 / e,x2 +3=|4x| / f, 2x + 5cănx +3 =0 / g, (x2 +x +1 ).(x2+x+2)=2 / h, x4-5x2+4=0
c, x4 + x2 -20=0 / k, x phần x2-1 -- 1 phần 2(x+1) = 1phan 2
Tìm điều kiện xác định của pt và giải hệ pt sau :
x2- căn (1-x) = căn ( x-2 ) + 3
\(x-\sqrt{1-x}=\sqrt{x-2}+3\)
\(ĐK:\left\{{}\begin{matrix}1-x\ge0\\x-2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x\ge2\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Vậy PT vô nghiệm
Bài 1. Tìm m để với mọi y>9 ta có m(căn y -3)(-4y)/(3-căn y) > y+1
Bài 2. Tìm m để phương trình x^2+4(m-1)x-12=0 có 2nghiệm pb x1, x2 thỏa mãn 4|x1-2|Căn (4-x2)=(x1+x2-x1x2-8)^2
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
Căn -x2+6x-5 >8-2x
Căn(x+5).(3x+4) <4.(x-1)
MỌI NGƯỜI GIẢI GIÚP MÌNH VỚI. CẢM ƠN
a/ ĐKXĐ: \(1\le x\le5\)
- Với \(4< x\le5\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT luôn đúng
- Với \(x\le4\) hai vế ko âm, bình phương:
\(-x^2+6x-5>64-32x+4x^2\)
\(\Leftrightarrow5x^2-38x+69< 0\) \(\Rightarrow3< x< \frac{23}{5}\)
Vậy nghiệm của BPT là: \(3< x\le5\)
b/ ĐKXĐ: \(\left[{}\begin{matrix}x\le-5\\x\ge-\frac{4}{3}\end{matrix}\right.\)
- Với \(x< 1\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT vô nghiệm
- Với \(x\ge1\) hai vế ko âm, bình phương:
\(\left(x+5\right)\left(3x+4\right)< 16\left(x-1\right)^2\)
\(\Leftrightarrow13x^2-51x-4>0\)
\(\Rightarrow x>4\)
Cho pt x^2 - 5x + m - 2 =0
a/ Giải pt khi m = -4
b/ Tìm m để pt có 2 nghiệm dương phân biệt x1, x2 thỏa \(\frac{ }{\sqrt{ }}\) 2(1 / căn x1 + 1 / căn x2 ) = 3