Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thiên Diệp
Xem chi tiết
Hung nguyen
6 tháng 6 2017 lúc 9:20

\(x^2=4^y+5\)

\(\Leftrightarrow x^2-4^y=5\)

\(\Leftrightarrow\left(x+2^y\right)\left(x-2^y\right)=5\)

\(\Rightarrow\left(x+2^y,x-2^y\right)=\left(1,5;5,1;-1,-5;-5,-1\right)\)

\(\Rightarrow\left(x,y\right)=\left(3,1;-3,1\right)\)

nguyen tuan duc
5 tháng 6 2017 lúc 21:28

ta thấy x2 chia 4 dư 0 hoặc 1 hay là x2 có dạng 4k+1 hoặc 4k

mà 4y chia 5 dư 4 hoặc 1 nên có dạng 4k+4 hoặc 4k+1

nên phương trình vô nghiệm

Nguyễn Thị Cẩm Ly
Xem chi tiết
Aoi Ogata
28 tháng 1 2018 lúc 21:12

bạn ơi đề khó nhìn vậy  

Nguyễn Thị Cẩm Ly
28 tháng 1 2018 lúc 21:51
bạn giúp mk vs đk k bạn
Hoàng Bảo Ngọc
Xem chi tiết
Thắng Nguyễn
19 tháng 2 2016 lúc 21:38

\(\Leftrightarrow\frac{y+x}{xy}=\frac{1}{2}\)

=>\(\frac{x+y}{xy}-\frac{1}{2}=0\)

\(\Rightarrow\frac{-\left(x-2\right)y-2x}{2xy}=0\)

=>(x-2)y-2x=0

=>x-2=0( vì x-2=0 thì nhân y-2x ms =0 )

=>x=2

=>y-2=0

=>y=2

vậy x=y=2

Thi Thuy Ha Ngo
Xem chi tiết
ViOlympic
1 tháng 9 2018 lúc 22:05

khó thế :(

KIM TAEHYUNG
24 tháng 9 2018 lúc 22:11

phắc cừn sít 

Incursion_03
24 tháng 9 2018 lúc 22:13

Đề này  thì giải bằng mắt  à @@

2 vế phương trình mỗi vế một ẩn @

Chịu thua !

Minz Ank
Xem chi tiết
Minz Ank
11 tháng 7 2023 lúc 17:04

Các bn giải theo phương pháp sử dụng đk có nghiệm của phương trình bậc hai giúp mk ạ!

blua
11 tháng 7 2023 lúc 19:45

mình có 1 cách khác nữa:
 vì y ∈ Z nên \(\dfrac{x^2-x+1}{x^2+x+1}\) ∈ Z 
=>x2-x+1⋮x2+x+1=> x2+x+1 -2x ⋮x2+x+1
=>2x⋮x2+x+1 (1)
Xét hiệu (x2+x+1)-2x=(x-\(\dfrac{1}{2}\))2+\(\dfrac{3}{4}\)>0
=>x2+x+1 > 2x (2)
Từ (1) và (2) kết hợp với 2x và x2+x+1 ∈ Z 
=> 2x =0 => x =0 => y=1 
Vậy phương trình có nghiệm (x,y) là (0,1)

Băng Hoài
Xem chi tiết
Thiên Thần Dễ Thương
Xem chi tiết
Nguyen Hai Yen
Xem chi tiết
Chi Nguyễn
Xem chi tiết
ILoveMath
27 tháng 11 2021 lúc 21:14

\(\left(1+x\sqrt{x^2+1}\right)\left(\sqrt{x^2+1}-x\right)=1\)

\(\Rightarrow\dfrac{1+x\sqrt{x^2+1}}{\sqrt{x^2+1}+x}=1\)

\(\Rightarrow1+x\sqrt{x^2+1}=\sqrt{x^2+1}+x\)

\(\Rightarrow1+x\sqrt{x^2+1}-\sqrt{x^2+1}-x=0\)

\(\Rightarrow-\left(x-1\right)+\left(x-1\right)\sqrt{x^2+1}=0\)

\(\Rightarrow\left(x-1\right)\left(\sqrt{x^2+1}-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\sqrt{x^2+1}-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\\sqrt{x^2+1}=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x^2+1=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)

 

Nguyễn Hoàng Minh
27 tháng 11 2021 lúc 21:27

\(a,2y^2-x+2xy=y+4\\ \Leftrightarrow2y\left(x+y\right)-\left(x+y\right)=4\\ \Leftrightarrow\left(2y-1\right)\left(x+y\right)=4=4\cdot1=\left(-4\right)\left(-1\right)=\left(-2\right)\left(-2\right)=2\cdot2\)

Vì \(x,y\in Z\Leftrightarrow2y-1\) lẻ 

\(\left\{{}\begin{matrix}2y-1=1\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2y-1=-1\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)

Vậy PT có nghiệm \(\left(x;y\right)=\left\{\left(3;1\right);\left(4;0\right)\right\}\)