chứng minh bất đẳng thức \(\sqrt{a}+\sqrt{a+2}< 2\sqrt{a+1}\)
. Cho ba số thực a, b, c không âm. Chứng minh bất đẳng thức : \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
Chứng minh bất đẳng thức: \(\sqrt{a+1}-\sqrt{a}< \dfrac{1}{2\sqrt{a}}\left(ĐK:a\ge1\right)\)
\(\Leftrightarrow2\sqrt{a\left(a+1\right)}-2a< 1\)
Lại có:\(2\sqrt{a\left(a+1\right)}\le a+a+1=2a+1\)
\(\Rightarrow2\sqrt{a\left(a+1\right)}-2a\le2a+1-2a=1\)
Dấu "=" không xảy ra
\(\Rightarrow\sqrt{a+1}-\sqrt{a}< \dfrac{1}{2\sqrt{a}}\)(đpcm)
Chứng minh bất đẳng thức a^2+b^2≥ab
Ta có:
\(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\)\(\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
Dấu " = " xảy ra ⇔ a=b
CM bất đẳng thức: \(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\sqrt[4]{ab}\) với a>0,b>0
ai còn thức giải bài này giúp mk đi, cảm ơn nhiều
Áp dụng BĐT cô si cho 2 số ko âm \(\sqrt{a}\) và \(\sqrt{b}\) ta được:
\(\sqrt{a}+\sqrt{b}\ge2\sqrt{\sqrt{ab}}\)
Suy ta: \(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\frac{2\sqrt{ab}}{2\sqrt{\sqrt{ab}}}=\sqrt{\sqrt{ab}}=\sqrt[4]{ab}\)
=>điều cần chứng minh
Chứng minh bất đẳng thức: (a+b)^2<=2(a^2+b^2)
\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+2ab+b^2\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( đúng )
Vậy ta có đpcm
Bài 1: Cho a,b,c là các số dương. Chứng minh các bất đẳng thức:
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}>2\)
( dùng cô -si )
bài 2( dùng định nghĩa )
1) Cho abc=1 và \(a^3>36\)Chứng minh rằng \(\frac{a^2}{3}+b^2+c^2>ab+bc+ca\)
2) Chứng minh rằng a) \(x^4+y^4+z^4+1\ge2x\left(xy^2-x+z+1\right)\)
b) Với mọi số thực a,b,c ta có: \(a^2+5b^2-4ab+2a-6b+3>0\)
c) \(a^2+2b^2-2ab+2a-4b+2\ge0\)
Tiện tay chém trước vài bài dễ.
Bài 1:
\(VT=\Sigma_{cyc}\sqrt{\frac{a}{b+c}}=\Sigma_{cyc}\frac{a}{\sqrt{a\left(b+c\right)}}\ge\Sigma_{cyc}\frac{a}{\frac{a+b+c}{2}}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Nhưng dấu bằng không xảy ra nên ta có đpcm. (tui dùng cái kí hiệu tổng cho nó gọn thôi nha!)
Bài 2:
1) Thấy nó sao sao nên để tối nghĩ luôn
2)
c) \(VT=\left(a-b+1\right)^2+\left(b-1\right)^2\ge0\)
Đẳng thức xảy ra khi a = 0; b = 1
2b) \(VT=\left(a-2b+1\right)^2+\left(b-1\right)^2+1\ge1>0\)
Có đpcm
Ồ bài 2 a mới sửa đề ak:)
Dạng 3.Chứng minh đẳng thức
Bài 1: CM
a)\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}=2\)
b)\(\left(5+\sqrt{21}\right)\left(\sqrt{14}-\sqrt{6}\right)\sqrt{5-\sqrt{21}}=8\)
Bài 2 :CM
\(\dfrac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{2}}=\sqrt{\sqrt{5}+1}\)
Bài 1
a) Đặt VT = A
<=> \(2\sqrt{2}A=\left(8+2\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{8-2\sqrt{15}}\)
<=> \(2\sqrt{2}A=\left(\sqrt{5}+\sqrt{3}\right)^2.\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right).\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
<=> \(2A=\left(\sqrt{5}+\sqrt{3}\right)^2.\left(\sqrt{5}-\sqrt{3}\right)^2\)
<=> 2A = \(\left(5-3\right)^2=4\)
<=> A = 2
b) Đặt VT = B
<=> \(2\sqrt{2}B=\left(10+2\sqrt{21}\right).\left(\sqrt{14}-\sqrt{6}\right)\sqrt{10-2\sqrt{21}}\)
<=> \(2\sqrt{2}B=\left(\sqrt{7}+\sqrt{3}\right)^2.\sqrt{2}\left(\sqrt{7}-\sqrt{3}\right).\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)
<=> \(2B=\left(\sqrt{7}+\sqrt{3}\right)^2.\left(\sqrt{7}-\sqrt{3}\right)^2=\left(7-3\right)^2=16\)
<=> B = 8
Bài 2
Đặt VT = A
<=> A2 = \(\dfrac{\sqrt{5}+2+\sqrt{5}-2+2\sqrt{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}}{2}\)
<=> A2 = \(\dfrac{2\sqrt{5}+2\sqrt{5-4}}{2}=\dfrac{2\sqrt{5}+2}{2}=\sqrt{5}+1\)
<=> \(A=\sqrt{\sqrt{5}+1}\)
Cho \(a+b+c=0\) ; a, b, c \(\ne\) 0. Chứng minh đẳng thức: \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}|\).
Nhờ các bạn
Lời giải:
Ta có: \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=(\frac{1}{a}+\frac{1}{b})^2-\frac{2}{ab}+\frac{1}{c^2}\)
\(=(\frac{1}{a}+\frac{1}{b})^2+2(\frac{1}{a}+\frac{1}{b})\frac{1}{c}+(\frac{1}{c})^2-2(\frac{1}{a}+\frac{1}{b})\frac{1}{c}-\frac{2}{ab}\)
\(=(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})^2-2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(=(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})^2-2.\frac{a+b+c}{abc}=(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})^2\) do $a+b+c=0$
\(\Rightarrow \sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})^2}=|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}|\) (đpcm)
Trung bình nhân là gì vậy mấy bạn???
Ở lớp 8 người ta có nói tới bất đẳng thức Cosi là \(\frac{a+b}{2} ≥ \sqrt {ab}\) với a≥0, b≥0 còn gọi là bất đẳng thức giữa trung bình cộng và trung bình nhân nhưng mình ko bik tb nhân là gì ?
Nếu được thì cho VD và giải thích ý nghĩa luôn giùm nha. Thanks nhiều ^_^
Trung bình nhân là: Căn số bậc hai của tích của hai số. VD: + ở BĐT Cô-si: căn ab là trung bình nhân của a và b
+ 6 là trung bình nhân của 4 và 9 vì 6 = \(\sqrt{4.9}\)