\(\Leftrightarrow2\sqrt{a\left(a+1\right)}-2a< 1\)
Lại có:\(2\sqrt{a\left(a+1\right)}\le a+a+1=2a+1\)
\(\Rightarrow2\sqrt{a\left(a+1\right)}-2a\le2a+1-2a=1\)
Dấu "=" không xảy ra
\(\Rightarrow\sqrt{a+1}-\sqrt{a}< \dfrac{1}{2\sqrt{a}}\)(đpcm)
\(\Leftrightarrow2\sqrt{a\left(a+1\right)}-2a< 1\)
Lại có:\(2\sqrt{a\left(a+1\right)}\le a+a+1=2a+1\)
\(\Rightarrow2\sqrt{a\left(a+1\right)}-2a\le2a+1-2a=1\)
Dấu "=" không xảy ra
\(\Rightarrow\sqrt{a+1}-\sqrt{a}< \dfrac{1}{2\sqrt{a}}\)(đpcm)
Cho biểu thức: \(P=\dfrac{xy-\sqrt{x^2-1}.\sqrt{y^2-1}}{xy+\sqrt{x^2-1}.\sqrt{y^2-1}}\). Tính giá trị biểu thứuc với \(x=\dfrac{1}{2}\left(a+\dfrac{1}{a}\right);y=\dfrac{1}{2}\left(b+\dfrac{1}{b}\right);a,b\ge1\)
a)Cho 0 < c ; c < b ; b < a . CMR:\(\sqrt{c\left(a-c\right)}+\sqrt{b\left(b-c\right)}\le\sqrt{ab}\)
b)Cho \(x\ge1;y\ge1\). CMR:\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)
A= \(\dfrac{\sqrt{c+ab}+\sqrt{2\left(a^2+b^2\right)}}{1+\sqrt{ab}}\ge1\)
Cho a,b,c >0
a+b+c=1
Cho a, b, c > 0 thoả mãn: \(a+b+c=\sqrt{a}+\sqrt{b}+\sqrt{c}=2\). Chứng minh rằng: \(\dfrac{\sqrt{a}}{a+1}+\dfrac{\sqrt{b}}{b+1}+\dfrac{\sqrt{c}}{c+1}=\dfrac{2}{\sqrt{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)
\(\sqrt{\dfrac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\dfrac{b^3}{b^3+\left(a+c\right)^3}}+\sqrt{\dfrac{c^3}{c^3+\left(a+b\right)^3}}\ge1\)
1. Cho biểu thức: A=\(\left[\dfrac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\dfrac{a+\sqrt{a}}{a-1}\right]:\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{1}{\sqrt{a}-1}\right)\)
Rút gọn biểu thức trên
1) Rút gọn biểu thứ
A=\(\left(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}+\dfrac{\sqrt{x^3}-\sqrt{y^3}}{y-x}\right):\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
a) Rút gọn A
b) Chứng minh A<1
1) Rút gọn biểu thức
P=\(\left(\dfrac{a+3\sqrt{a}+2}{a+\sqrt{a}-2}-\dfrac{a+\sqrt{a}}{a-1}\right):\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{1}{\sqrt{a}-1}\right)\)
Cho:
\(A=\left(\dfrac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}\right):\left(\dfrac{1}{a}-\dfrac{1}{b}\right)\)
Biết \(2\sqrt{a}-\sqrt{b}=4\sqrt{ab}\). Tìm min A