Cho ví dụ hai tập hợp A và B mà \(A\subset B\) và \(B\subset A\) ?
Cho ví dụ hai tập hợp A và B mà A \(\subset\) B và B \(\subset\) A.
\(A=\left\{1;2;3;4\right\}\)
\(B=\left\{1;2;3;4\right\}\)
\(\Rightarrow A\subset B;B\subset A\)
A\(\subset\)B
A=\(\left\{1;2;3;4;5\right\}\)
B=\(\left\{0;1;2;3;4;5\right\}\)
B\(\subset\)A
B=\(\left\{2;4;6;8;10\right\}\)
A=\(\left\{0;2;4;6;8;10;12\right\}\)
Do \(A\subset B\) và \(B\subset A\) nên A = B
Vậy ta chỉ cần lấy ví dụ về 2 tập hợp = nhau
VD: A = {0 ; 1}
B = {0 ; 1} thỏa mãn đề bài
Cho ví dụ hai tập hợp A và B mà A \(\subset\) B và B \(\subset\) A.
hai tập hợp A và B mà A ⊂ B và B ⊂ A thì A và B có số phần tử như nhau và các phần tử của A phải giống các phần tử của B (có thể thay đổi trật tự)
VD : A = {5;1;9} ; B = {9;1;5}
Cho ví dụ hai tập hợp A và B mà A \(\subset\) B và B \(\subset\) A
bài 1:
cho ví dụ hai tập hợp A và B mà A\(\subset\)B và B \(\subset\)A.
bài 2:
gọi A là tập hợp các học sinh của lớp 6A có hai điểm 10 trở lên, B là tập hợp các học sinh của lớp 6A có ba điểm 10 trở lên, M là tập hợp các học sinh của lớp 6A có bốn điểm 10 trở lên.Dùng kí hiệu \(\subset\)đề thể hiện quan hệ giữ hai trong ba tập hợp trên.
Cho hai tập hợp:
\(A = \{ 0;6;12;18\},\)
\(B = \{ n \in N|\, n \le 18\) và n là bội của 6}.
Các mệnh đề sau có đúng không?
a) \(A \subset B.\)
b) \(B \subset A.\)
a) Nếu n là bội chung của 2 và 3 thì n là bội của 6, hay \(n \in B\)
Vậy mệnh đề \(A \subset B\) đúng.
b) Nếu n là bội 6 thì n vừa là bội của 2 vừa là bội của 3.
Do đó n là bội chung của 2 và 3 hay \(n \in A\).
Vậy mệnh đề \(A \subset B\) đúng.
[1] Cho tập hợp A = { 1; a; b }. Chọn khằng định sai:
A. \(\varnothing\subset A\) B. \(A\subset A\) C. \(1\subset A\) D. \(\left\{a;b\right\}\) \(\subset A\)
Ta có:
\(A=\left\{1;a;b\right\}\)
Xét:
A. \(\varnothing\subset A\) (đúng)
B. \(A\subset A\) (đúng)
C. \(1\subset A\) (sai)
D. \(\left\{a,b\right\}\subset A\) (đúng)
⇒ Chọn C
cho hai tập hợp:
A={x\(\in\)R|\(x^2\)+x-6=0 hoặc 3\(x^2\)-10x+8=0};
B={x\(\in\)R|\(x^2\)-2x-2=0 và 2\(x^2\)-7x+6=0}.
a) viết tập hợp A,B bằng cách liệt kê các phần tử của nó.
b) tìm tất cả các tập hợp sao cho \(B\subset X\) và \(X\subset A\).
a: A={x\(\in R\)|x^2+x-6=0 hoặc 3x^2-10x+8=0}
=>x^2+x-6=0 hoặc 3x^2-10x+8=0
=>(x+3)(x-2)=0 hoặc (x-2)(3x-4)=0
=>\(x\in\left\{-3;2;\dfrac{4}{3}\right\}\)
=>A={-3;2;4/3}
B={x\(\in\)R|x^2-2x-2=0 hoặc 2x^2-7x+6=0}
=>x^2-2x-2=0 hoặc 2x^2-7x+6=0
=>\(x\in\left\{1+\sqrt{3};1-\sqrt{3};2;\dfrac{3}{2}\right\}\)
=>\(B=\left\{1+\sqrt{3};1-\sqrt{3};2;\dfrac{3}{2}\right\}\)
A={-3;2;4/3}
b: \(B\subset X;X\subset A\)
=>\(B\subset A\)(vô lý)
Vậy: KHông có tập hợp X thỏa mãn đề bài
cho hai tập hợp A = { a,b,c,d}, B = { a,b}
a) dùng kí hiệu \(\subset\)để thể hiện quan hệ giữa hai tập hợp A và B
Cho hai tập hợp \(A=\left(0;+\infty\right)\) và \(B=\left\{x\in R|mx^2-4x+m-3=0\right\}\). Tìm m để B có đúng 2 tập hợp con và \(B\subset A\)
\(mx^2-4x+m-3=0\left(1\right)\)
Để tập hợp B có đúng 2 tập con và \(B\subset A\) thì \(\left(1\right)\) có 2 nghiệm phân biệt cùng dương
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\P>0\\S>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4-m\left(m-3\right)>0\\\dfrac{m-3}{m}>0\\\dfrac{4}{m}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m-4< 0\\m< 0\cup m>3\\m>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1< m< 4\\m< 0\cup m>3\\m>0\end{matrix}\right.\)
\(\Leftrightarrow3< m< 4\)
Ta có:
\(\overrightarrow{AG}=\overrightarrow{AB}+\overrightarrow{BG}\)
+) \(\overrightarrow{BG}=\dfrac{1}{3}\left(\overrightarrow{BM}+\overrightarrow{BN}\right)=\dfrac{1}{3}\left(-\dfrac{2}{3}\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CN}\right)\)
\(=\dfrac{1}{3}\left(-\dfrac{2}{3}\overrightarrow{AB}+\overrightarrow{AC}-\overrightarrow{AB}-\dfrac{1}{2}\overrightarrow{DC}\right)=\dfrac{1}{3}\left(-\dfrac{13}{6}\overrightarrow{AB}+\overrightarrow{AC}\right)\)
\(=-\dfrac{13}{18}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)
=> \(\overrightarrow{AG}=\dfrac{5}{18}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)
Mặt khác:
\(\overrightarrow{AI}=\overrightarrow{AB}+\overrightarrow{BI}=\overrightarrow{AB}+k\overrightarrow{BC}=\overrightarrow{AB}+k\left(\overrightarrow{AC}-\overrightarrow{AB}\right)=\left(1-k\right)\overrightarrow{AB}+k\overrightarrow{AC}\)
Để A, G, I thẳng hàng
=>\(\dfrac{\dfrac{5}{18}}{1-k}=\dfrac{\dfrac{1}{3}}{k}\Rightarrow k=\dfrac{6}{11}\)