2) Với giá trị nào của x thì ta có:
a) \(\left|x\right|+x=0\)
b) \(x+\left|x\right|=2x\)
Với giá trị nào của x thì ta có :
a) \(\left|x\right|+x=0\)
b) \(x+\left|x\right|=2x\)
a)
- Với x ≥ 0 thì |x| = x
Khi đó |x| + x = 0 => x + x = 0
=> 2x = 0 => x = 0 (thỏa mãn điều kiện) (1)
- Với x ≤ 0 thì |x| = -x
Khi đó |x| + x = 0 => -x + x = 0
=> 0x = 0 luôn có nghiệm đúng ∀x ∈ R
Vì x < 0 nên ta chỉ chọn các giá trị âm của R. (2)
Từ (1) và (2) suy ra:
∀x ≤ 0 thì ta có |x| + x = 0
b)
- Với x ≥ 0 thì |x| = x
Khi đó x + |x| = 2x tương đương với:
x + x = 2x => 2x = 2x
=> 0x = 0 luôn có nghiệm đúng ∀x ≥ 0 (1)
- Với x < 0 thì |x| = -x
Khi đó x + |x| = 2x tương đương với:
x - x = 2x => 2x = 0 => x = 0 (loại) (2)
Từ (1) và (2) suy ra:
∀x ≥ 0 thì ta có x + |x| = 2x
Với giá trị nào của x thì ta có:
a)|x| + x = 0; b) x + |x| = 2x.
a)+Với thì |x| = x
Khi đó |x| + x = 0 => x + x = 0 hay 2x = 0 =>x = 0 (nhận) (1)
+Với x < 0 thì |x| = -x
Khi đó |x| + x = 0 => -x + x =0
Hay 0x = 0
Biến thức 0x = 0 luôn luôn có nghiệm đúng với mọi x ∈ R
Vì x < 0 nên ta chỉ chọn các giá trị âm của tập số thực R (2)
Từ (1) và (2) ta kết luận: Với mọi giá trị thì: ta có: |x| + x = 0
+Với x ≥ 0 thì |x| = x
Khi đó từ biểu thức x + |x| = 2x ta được x + x = 2x
Hay 2x = 2x => 0x = 0
Đẳng thức này luôn có nghiệm đúng với mọi x ∈ R, x ≥ 0 (1)
+Với x < 0 thì |x| = -x
Khi đó: x + |x| = 2x => x – x = 2x hay 2x = 0 => x = 0 (loại) (2)
Từ (1) và (2) suy ra:
Với mọi giá trị x ∈ R, x ≥ 0 thì ta có biểu thức:
x + |x| = 2x
Câu a bạn không nghi nhưng mình vẫn bik do mình có sách làm rồi nha bạn
1.Với giá trị nào của biến thì giá trị của biểu thức bằng 0
\(\frac{x+1}{7};\frac{3x+3}{5};\frac{3x\left(x-5\right)}{x-7};\frac{2x\left(x+1\right)}{3x+4}\)
2.Tính giá trị của các biểu thức sau:
\(A=\frac{a^2\left(a^2+b^2\right)\left(a^{\text{4}}+b^{\text{4 }}\right)\left(a^8+b^8\right)\left(a^2-3b\right)}{\left(a^{10}+b^{10}\right)}\)tại a=6;b=12
\(B=3xy\left(x+y\right)+2x^3y+2x^2y^2+5\)tại x+y=0
\(C=2x+2y+3xy\left(x+y\right)+5\left(x^3y^2+x^2y^3\right)+4\)tại x+y=0
\(P=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\) với x>0;\(x\ne1;x\ne4\)
a, rút gọn
b, với giá trị nào của x thì P có giá trị =\(\dfrac{1}{4}\)
c, tìm giá trị của Ptại \(x=4+2\sqrt{3}\)
P = (\(\dfrac{1}{\sqrt{x}-1}\) - \(\dfrac{1}{\sqrt{x}}\)) : (\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\) - \(\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)) với 0 < \(x\) ≠ 1; 4
P = \(\dfrac{\sqrt{x}-\left(\sqrt{x}-1\right)}{\sqrt{x}.\left(\sqrt{x}-1\right)}\): (\(\dfrac{\left(\sqrt{x}+1\right).\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right).\left(\sqrt{x-2}\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}\))
P = \(\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\): \(\dfrac{x-1-\left(x-4\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}\)
P = \(\dfrac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\) : \(\dfrac{3}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}\)
P = \(\dfrac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\) \(\times\) \(\dfrac{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}{3}\)
P = \(\dfrac{\sqrt{x}-2}{3.\sqrt{x}}\)
P = \(\dfrac{\sqrt{x}.\left(\sqrt{x}-2\right)}{3x}\)
b, P = \(\dfrac{1}{4}\)
⇒ \(\dfrac{\sqrt{x}.\left(\sqrt{x}-2\right)}{3x}\) = \(\dfrac{1}{4}\)
⇒4\(x\) - 8\(\sqrt{x}\) = 3\(x\)
⇒ 4\(x\) - 8\(\sqrt{x}\) - 3\(x\) = 0
\(x\) - 8\(\sqrt{x}\) = 0
\(\sqrt{x}\).(\(\sqrt{x}\) - 8) = 0
\(\left[{}\begin{matrix}x=0\\\sqrt{x}=8\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=64\end{matrix}\right.\)
\(x=0\) (loại)
\(x\) = 64
Lời giải:
a. \(P=\frac{\sqrt{x}-(\sqrt{x}-1)}{\sqrt{x}(\sqrt{x}-1)}: \frac{(\sqrt{x}+1)(\sqrt{x}-1)-(\sqrt{x}-2)(\sqrt{x}+2)}{(\sqrt{x}-2)(\sqrt{x}-1)}\)
\(=\frac{1}{\sqrt{x}(\sqrt{x}-1)}: \frac{x-1-(x-4)}{(\sqrt{x}-2)(\sqrt{x}-1)}=\frac{1}{\sqrt{x}(\sqrt{x}-1)}:\frac{3}{(\sqrt{x}-1)(\sqrt{x}-2)}\\ =\frac{1}{\sqrt{x}(\sqrt{x}-1)}.\frac{(\sqrt{x}-1)(\sqrt{x}-2)}{3}=\frac{\sqrt{x}-2}{3\sqrt{x}}\)
b.
\(P=\frac{\sqrt{x}-2}{3\sqrt{x}}=\frac{1}{4}\\ \Rightarrow 4(\sqrt{x}-2)=3\sqrt{x}\\ \Leftrightarrow \sqrt{x}=8\Leftrightarrow x=64\)
(thỏa mãn)
c.
Tại $x=4+2\sqrt{3}=(\sqrt{3}+1)^2\Rightarrow \sqrt{x}=\sqrt{3}+1$
Khi đó:
$P=\frac{\sqrt{3}+1-2}{3(\sqrt{3}+1)}=\frac{2-\sqrt{3}}{3}$
1.Với giá trị nào của m thì BPT thỏa mãn sau thỏa mãn với mọi x
\(x^2-2mx+2\left|x-m\right|+2>0\)
2. Với giá trị nào của m thì BPT sau có nghiệm
\(x^2+2\left|x-m\right|+m^2+m-1\le0\)
\(B=\left(\frac{x-4}{x\left(x-2\right)}+\frac{2}{x-2}\right):\left(\frac{x+2}{x}-\frac{x}{x-2}\right)\)
a, Rút gọn B
b, Tính giá trị của B biết x=-2
c, Tìm x biết \(\left|B\right|-2x=5\)
d, Tìm giá trị nhỏ nhất của (2-x).B
e, Với giá trị nào của x thì B là số nguyên âm lớn nhất?
g, Tìm điều kiện của x để \(\left|B\right|+3< 2x-1\)
\(B=\left(\frac{x-4}{x\left(x-2\right)}+\frac{2}{x-2}\right):\left(\frac{x+2}{x}-\frac{x}{x-2}\right)\)
\(< =>B=\left(\frac{x-4}{x\left(x-2\right)}+\frac{2x}{x\left(x-2\right)}\right):\left(\frac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}+\frac{x.x}{x\left(x-2\right)}\right)\)
\(< =>B=\left(\frac{x-4+2x}{x\left(x-2\right)}\right):\left(\frac{x^2-4}{x\left(x-2\right)}+\frac{x^2}{x\left(x-2\right)}\right)\)
\(< =>B=\frac{3x-4}{x\left(x-2\right)}:\frac{x^2-4+x^2}{x\left(x-2\right)}\)
\(< =>B=\frac{3x-4}{x\left(x-2\right)}.\frac{x\left(x-2\right)}{2x^2-4}\)
\(< =>B=\frac{3x-4}{2x^2-4}\)
\(b,\)Với \(x=-2\)thì
\(B=\frac{3\left(-2\right)-4}{2\left(-2\right)^2-4}=\frac{-6-4}{8-4}=-\frac{10}{4}=-\frac{5}{2}\)
\(ĐKXĐ:x\ne2;x\ne0\)
a
\(B=\left[\frac{x-4}{x\left(x-2\right)}+\frac{2}{x-2}\right]:\left(\frac{x+2}{x}-\frac{x}{x-2}\right)\)
\(=\frac{x-4+2x}{x\left(x-2\right)}:\frac{\left(x+2\right)\left(x-2\right)-x^2}{x\left(x-2\right)}\)
\(=\frac{3x-4}{x^2-4-x^2}=-\frac{3x-4}{4}\)
b
\(B=-\frac{3x-4}{4}=-\frac{3\cdot\left(-2\right)-4}{4}=\frac{5}{2}\)
c
\(\left|B\right|-2x=5\Leftrightarrow\left|B\right|=5+2x\)
\(B=-\frac{3x-4}{4}\Leftrightarrow-\frac{3x-4}{4}\ge0\Leftrightarrow x\le\frac{4}{3}\)
\(B=\frac{3x-4}{4}\Leftrightarrow x>\frac{4}{3}\)
Xét các trường hợp của x thì ra nghiệm bạn nhé
d
\(\left(2-x\right)B=-\frac{\left(2-x\right)\left(3x-4\right)}{4}\)
Để ( 2 - x ).B đạt giá trị nhỏ nhất thì ( 2 - x ) ( 3x - 4 ) đạt giá trị lớn nhất
Casio sẽ giúp chúng ta phần này
e
Để B là số nguyên âm lớn nhất hay \(B=-1\Leftrightarrow-\frac{3x-4}{4}=-1\Leftrightarrow x=\frac{8}{3}\)
g
\(\left|B\right|+3< 2x-1\)
Làm hệt như câu c nhé :D
\(B=\left(\frac{x-4}{x\left(x-2\right)}+\frac{2}{x-2}\right):\left(\frac{x+2}{x}-\frac{x}{x-2}\right)\)
ĐKXĐ : \(x\ne0,x\ne2\)
a) \(B=\left(\frac{x-4}{x\left(x-2\right)}+\frac{2x}{x\left(x-2\right)}\right):\left(\frac{\left(x+2\right)\left(x-2\right)}{x\left(x-2\right)}-\frac{x\cdot x}{x\left(x-2\right)}\right)\)
\(B=\left(\frac{x-4+2x}{x\left(x-2\right)}\right):\left(\frac{x^2-4-x^2}{x\left(x-2\right)}\right)\)
\(B=\frac{3x-4}{x\left(x-2\right)}\cdot\frac{x\left(x-2\right)}{-4}\)
\(B=\frac{3x-4}{-4}=\frac{-3x+4}{4}\)
b) Thế x = -2 ( tmđk ) vào B ta được :
\(B=\frac{-3\cdot\left(-2\right)+4}{4}=\frac{10}{4}=\frac{5}{2}\)
c) \(\left|B\right|-2x=5\)
\(\Leftrightarrow\left|\frac{-3x+4}{4}\right|-2x=5\)
\(\Leftrightarrow\frac{-3x+4}{4}-2x=5\)
\(\Leftrightarrow\frac{-3x+4}{4}-\frac{8x}{4}=5\)
\(\Leftrightarrow\frac{-3x+4-8x}{4}=5\)
\(\Leftrightarrow\frac{-11x+4}{4}=5\)
\(\Leftrightarrow-11x+4=20\)
\(\Leftrightarrow-11x=16\)
\(\Leftrightarrow x=-\frac{16}{11}\)
Nhờ các bạn khác làm nốt ạ -.-
Cho hai phương trình : \(2x^2+\left(3m+1\right)x-9=0\) (1) và \(6x^2+\left(7m-1\right)x-19=0\) (2) . Với giá trị nào của m thì hai phương trình có nghiệm chung? Tìm nghiệm chung đó
cho biểu thức A=\(\sqrt{\left[3x+1\right]\left[x-2\right]}\)và B=\(\sqrt{3x+1}.\sqrt{x-2}\)với giá trị nào của x thì A=B,với giá trị nào của x thì chỉ A có nghĩa còn B không có nghĩa
Với giá trị nào của x thì \(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\) đạt giá trị nhỏ nhất?
Có: \(\begin{cases}\left|x-1\right|\ge x-1\\\left|x-2\right|\ge x-2\\\left|x-3\right|\ge3-x\\\left|x-4\right|\ge4-x\end{cases}\)\(\forall x\)
\(\Rightarrow B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\ge\left(x-1\right)+\left(x-2\right)+\left(3-x\right)+\left(4-x\right)\)
\(\Rightarrow B\ge4\)
Dấu "=" xảy ra khi \(\begin{cases}x-1\ge0\\x-2\ge0\\x-3\le0\\x-4\le0\end{cases}\)\(\Rightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le4\end{cases}\)\(\Rightarrow2\le x\le3\)
Vậy với \(2\le x\le3\) thì B đạt GTNN là 4
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} + x + 1,\,\,x \ne 4\\2a + 1,\,\,x = 4\end{array} \right.\)
a) Với a = 0, xét tính liên tục của hàm số tại x = 4.
b) Với giá trị nào của a thì hàm số liên tục tại x = 4?
c) Với giá trị nào của a thì hàm số liên tục trên tập xác định của nó?
a) Với a = 0, tại x = 4, ta có:
\(\begin{array}{l}\mathop {\lim }\limits_{x \to 4} f\left( x \right) = \mathop {\lim }\limits_{x \to 4} \left( {{x^2} + x + 1} \right) = {4^2} + 4 + 1 = 21\\f\left( 4 \right) = 2.0 + 1 = 1\\ \Rightarrow \mathop {\lim }\limits_{x \to 4} f\left( x \right) \ne f\left( 4 \right)\end{array}\)
Do đó hàm số không liên tục tại x = 4.
b) Ta có:
\(\begin{array}{l}\mathop {\lim }\limits_{x \to 4} f\left( x \right) = \mathop {\lim }\limits_{x \to 4} \left( {{x^2} + x + 1} \right) = {4^2} + 4 + 1 = 21\\f\left( 4 \right) = 2a + 1\end{array}\)
Để hàm số liên tục tại x = 4 thì \(\mathop {\lim }\limits_{x \to 4} f\left( x \right) = f\left( 4 \right)\)
\(\begin{array}{*{20}{l}}{ \Leftrightarrow \;21{\rm{ }} = {\rm{ }}2a{\rm{ }} + {\rm{ }}1}\\{ \Leftrightarrow \;2a{\rm{ }} = {\rm{ }}20}\\{ \Leftrightarrow \;a{\rm{ }} = {\rm{ }}10}\end{array}\)
Vậy với a = 10 thì hàm số liên tục tại x = 4.
c) TXĐ: \(\mathbb{R}\)
Với \(x\; \in \;\left( {-{\rm{ }}\infty ;{\rm{ }}4} \right)\) có \(f\left( x \right) = {x^2} + x + 1\) liên tục với mọi x thuộc khoảng này.
Với \(x\; \in \;\left( {4;{\rm{ }} + \infty } \right)\) có \(f\left( x \right) = 2a + 1\) liên tục với mọi x thuộc khoảng này.
Do đó hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) khi hàm số \(f\left( x \right)\) liên tục tại điểm x = 4 khi a = 10.
Vậy với a = 10 hàm số liên tục trên tập xác định của nó.
với giá trị nào của k thì phương trình \(2x^2+\left(k-9\right)x+k^2+3k+4=0\) có nghiệm kép ( x là ẩn số )
Ta có: \(\Delta=-7k^2-42k+49\)
Để phương trình có nghiệm kép \(\Leftrightarrow\Delta=-7k^2-42k+49=0\) \(\Leftrightarrow\left[{}\begin{matrix}k=1\\k=-7\end{matrix}\right.\)
Vậy ...