Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 8 2023 lúc 20:13

\(\dfrac{2}{sinx}-\dfrac{sinx}{1+cosx}\)

\(=\dfrac{2+2cosx-sin^2x}{sinx\left(1+cosx\right)}=\dfrac{2\left(1+cosx\right)-\left(1-cos^2x\right)}{sinx\left(1+cosx\right)}\)

\(=\dfrac{\left(1+cosx\right)\left(2-1+cosx\right)}{sinx\left(1+cosx\right)}=\dfrac{cosx+1}{sinx}\)

Lâm Ánh Yên
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 8 2021 lúc 17:23

\(\left|\sqrt{3}sinx+cosx\right|=2\left|\dfrac{\sqrt{3}}{2}sinxx+\dfrac{1}{2}cosx\right|=2\left|sin\left(x+\dfrac{\pi}{6}\right)\right|\le2\)

Đề bài sai 

Phạm Minh Thành
Xem chi tiết
títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 8 2023 lúc 20:13

\(\dfrac{1}{cosx}-\dfrac{cosx}{1+sinx}=\dfrac{1+sinx-cos^2x}{cosx\left(1+sinx\right)}\)

\(=\dfrac{\left(1+sinx\right)-\left(1+sinx\right)\left(1-sinx\right)}{cosx\left(1+sinx\right)}\)

\(=\dfrac{\left(1+sinx\right)\left(1-1+sinx\right)}{\left(1+sinx\right)\cdot cosx}=\dfrac{sinx}{cosx}=tanx\)

=>ĐPCM

Quỳnh Hương
Xem chi tiết
Dien Nguyen Hong
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 6 2020 lúc 23:06

\(1+sinx+cosx+tanx=1+cosx+sinx+\frac{sinx}{cosx}\)

\(=1+cosx+\frac{sinx\left(1+cosx\right)}{cosx}=\left(1+cosx\right)\left(1+\frac{sinx}{cosx}\right)\)

\(=\left(1+cosx\right)\left(1+tanx\right)\)

Cute Loan
5 tháng 8 2022 lúc 22:02
\(VT=1+\cos x+\sin x+\dfrac{\sin x}{\cos x}\)       \(=1+\cos x+\dfrac{\sin x.\cos x+\sin x}{\cos x}\)       \(=1+\cos x+\dfrac{\sin x.\left(\cos x+1\right)}{\cos x}\)       \(=\left(1+\cos x\right)+\tan x.\left(1+\cos x\right)\)       \(=\left(1+\cos x\right)\left(1+\tan x\right)\)
Nguyển Nhật Việt Hà
Xem chi tiết
vu duc anh
4 tháng 7 2019 lúc 14:28

iu a ko 

Như Nguyễn
Xem chi tiết
Akai Haruma
14 tháng 5 2018 lúc 19:38

Lời giải:

Ta có:

VT\(=\frac{1+\cot ^2x}{1-\cot ^2x}+\frac{\cos x}{\cos x-\sin x}=\frac{1+\left(\frac{\cos x}{\sin x}\right)^2}{1-\left(\frac{\cos x}{\sin x}\right)^2}+\frac{\cos x}{\cos x-\sin x}\)

\(=\frac{\sin ^2x+\cos ^2x}{\sin ^2x(1-\frac{\cos ^2x}{\sin ^2x})}+\frac{\cos x(\cos x+\sin x)}{\cos ^2x-\sin ^2x}\)

\(=\frac{1}{\sin ^2x-\cos ^2x}-\frac{\cos x(\cos x+\sin x)}{\sin ^2x-\cos ^2x}\)

\(=\frac{1-\cos ^2x-\cos x\sin x}{\sin ^2x-\cos ^2x}=\frac{\sin ^2x-\cos x\sin x}{\sin ^2x-\cos ^2x}\)

\(=\frac{\sin x(\sin x-\cos x)}{\sin ^2x-\cos ^2x}=\frac{\sin x}{\sin x+\cos x}\)

Ta có đpcm.

Mai Anh Vũ Trần
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 4 2020 lúc 16:27

\(sin3x-cos3x=\left(3sinx-4sin^3x\right)-\left(4cos^3x-3cosx\right)\)

\(=3\left(sinx+cosx\right)-4\left(sin^3x+cos^3x\right)\)

\(=2\left(sin^3x+cos^3x\right)-6\left(sin^3x+cos^3x\right)+3\left(sinx+cosx\right)\)

\(=2\left(sin^3x+cos^3x\right)-6\left(sinx+cosx\right)\left(1-sinx.cosx\right)+3\left(sinx+cosx\right)\)

\(=2\left(sin^3x+cos^3x\right)-3\left(sinx+cosx\right)\left(1-2sinx.cosx\right)\)

\(=2\left(sin^3x+cos^3x\right)+6sinx.cosx\left(sinx+cosx\right)-3\left(sinx+cosx\right)\)

\(=2\left(sinx+cosx\right)^3-3\left(sinx+cosx\right)\) (đpcm)

Khách vãng lai đã xóa