Chứng tỏ P là số nguyên tố lớn hơn 3 và 2p+1 cũng là số nguyên tố thì 4p+1 là hợp số?
chứng tỏ rằng ;
a, nếu p là số nguyên tố lớn hơn 3 và 2p+1 cũng là số nguyên tố thì 4p+1 là hợp số
b, nếu p là số nguyên tố lớn hơn 3 và 8p+1 cũng là số nguyên tố thì 4p+1 cũng là hợp số
A , p là ; snt lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2
xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI
xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)
vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số
do đó 4p + 1 là hợp số ( đpcm)
B , nếu p = 3k+1 thì 8p+1 = 8(3k+1)+1 = 24k + 8 +1 =24k+9 (chia hết cho 3 nên là hợp số) LOẠI
nếu p = 3k + 2 thì 8p + 1 =8(3k+2) +1 =24k + 16 +1 =24k+17(là snt theo đề bài ) ta chọn t/ hợp này
vậy 4p +1 sẽ bằng 4(3k+2)+1 = 12k + 8 +1 =12k+9 (luân chia hết cho 3) nên là hợp số
chứng tỏ 4p+1 là hợp số (đpcm)
Vì a và p là số nguyên tố lớn hơn 3 nên p sẽ có dạng : 3k+1
Nếu p= 3k+1 ta có 2p+1= 2(3k+1)+1= 6k+2+1=6k+2 là hợp số (LOẠI)
VẬY ......................
b)Tương tự cách làm trên:
Nếu p=3k+1 thì 8p+1 =8(3k+1)+1=24k+8+1 =24k+9chia hết cho 3 nên là hợp số(loại)
Vậy.....................................
Chứng tỏ P là nguyên tố lớn hơn 3 và 2P+1 cũng là số nguyên tố thì 4P+1 là hợp số
Chứng tỏ rằng nếu p là số nguyên tố lớn hơn 3 và 2p+1 cũng là số nguyên tố thì 4p+1 hợp số
Vì p là số nguyên tố lớn hơn 3, nên p = 3k+1 hoặc p = 3k+2 (k ∈ N*).
Nếu p = 3k+1 thì 2p+1 = 2(3k+1)+1 = 6k+3 ∈ 3 và 6k+3 > 3 nên 2p+1 là hợp số (loại).
Vậy p = 3k+2. Khi đó 4p+1 = 4(3k+2)+1 = 12k+9 ∈ 3 và 12k+9>3 nên là hợp số.
Chứng tỏ rằng nếu p là số nguyên tố lớn hơn 3 và 2p + 1 cũng là số nguyên tố thì 4p + 1 hợp số
Chứng tỏ rằng nếu P là số nguyên tố lớn hơn 3 và 2P+1 cũng là số nguyên tố thì 4P+1 là hợp số
p là số nguyên tố >3
=>p có dạng 3k+1 hoặc 3k+2
nếu 3=3k+2 thì 2p+1=2.3k+1+2=6k+1+2=6k+3=3(2k+1) chia hết cho 3 => loại
=>p=3k+2
=>4p+1=4.3k+2+1=12k+3=3(4k+1) chia hết cho 3 =>là hợp số
=>dpcm
Tôi có cách này nhanh mà gọn hơn
Do p là số nguyên tố và p>3
p = 3k+1 hoặc 3k+2 (k là số tự nhiên)
Nếu p=3k+1 thì 2p+1=2(3k+1)+1=6k+2+1=6k+3 chia hết cho 3 mà 2p+1 là số nguyên tố(L)
Nếu p=3k+2 thì 2p+1=2(3k+2)+1=6k+4+1=6k+5 không chia hết cho 3 (C)
4p+1=4(3k+2)+1=12k+8+1=12k+9 cia hết cho 3 và lớn hơn 3
4p+1 là hợp số (đpcm)
Chứng tỏ rằng nếu p là số nguyên tố lớn hơn 3 và 2p+1 cũng là số nguyên tố thì 4p+1 là hợp số
nếu p là số ngyueen tố > 3
suy ra p \(⋮̸\) 3
suy ra p = 3k+1 hoặc p = 3k + 2 ( p \(\inℕ\))
th1 : p = 3k + 1
suy ra 2p +1=( 3k+1)x2 + 1= 6k +2 + 1=6k + 3 = 3x( 2k +1)\(⋮\)3( trái với giả thiết 2p + 1 cũng là số nguyên tố)
suy ra p = 3k + 2
suy ra 4 p +1 = ( 3k +2 )x4 + 1 = 12k + 8+1 =12k + 9= 3 x( 3 + 4k)\(⋮\)3
suy ra 4p + 1 là hợp số với p là số nguyên tố lớn hơn 3
chứng tỏ rằng nếu P là số nguyên tố lớn hơn 3 và 2p+1 cũng là số nguyên tố thì 4p+1 là hợp số
Vì p là số nguyên tố lớn hơn 3 nên p có dạng là 3k+1 hoặc 3k+2. ( k\(\in\)N*)
Nếu p=3k+1
\(\Rightarrow\) 2p+1 =2(3k+1) +1 =6k+2+1=6k+3=3(2k+1) \(⋮\) 3
\(\Rightarrow\) 2p+1 là hợp số.( trái với đề bài)
\(\Rightarrow\) p=3k+1 ( loại)
\(\Rightarrow\) p=3k+2
\(\Rightarrow\) 2p+1 = 2(3k+2)+1=6k+4+1=6k+5 là số nguyên tố ( thỏa mãn)
\(\Rightarrow\) 4p+1 = 4(3k+2)+1=12k+8+1=12k+9=3(4k+3)\(⋮\) 3
\(\Rightarrow\) 4p+1 là hợp số.
Vậy với p là số nguyên tố lớn hơn 3 và 2p+1 là số nguyên tố thì 4p+1 là hợp số.
Vì p là số nguyên tố lớn hơn 3 nên p có dạng là 3k+1 hoặc 3k+2 ( k\(\in\) N)
Nếu p=3k+1
=> 2p+1+ 2(3k+1) +1= 6k+ 2+1=6k+3= 3(2k+1)\(⋮\) 3
=> 2p+1 là hợp số( trái với đề bài)
=> p= 3k+1 (loại)
=> p= 3k+2
=> 2p+1= 2(3k+2) +1= 6k+4+1= 6k+5 là số nguyên tố( thoả mãn)
=> 4p+1=4( 3k+2)+1- 12k+ 8+1=12k+9=3(4k+3)\(⋮\) 3
4p+1 là hợp số
Vậy với p là số nguyên tố lớn hơn 3 và 2p+1 là số nguyên tố thì 4p+1 là hợp số.
Chúc bn hok tốt!
Chứng tỏ rằng nếu p là số nguyên tố lớn hơn 3 và 2p + 1 cũng là số nguyên tố thì 4p+1 là hợp số
Xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2, trong 3 số này có 1 số chia hết cho 3
Do p nguyên tố > 3 => p không chia hết cho 3 => 4p không chia hết cho 3
2p + 1 cũng là số nguyên tố > 3 => 2p + 1 không chia hết cho 3 => 2.(2p + 1) hay 4p + 2 không chia hết cho 3
=> 4p + 1 chia hết cho 3
Mà 1 < 3 < 4p + 1 => 4p + 1 là hợp số
Xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2, trong 3 số này có 1 số chia hết cho 3
Do p nguyên tố > 3 => p không chia hết cho 3 => 4p không chia hết cho 3
2p + 1 cũng là số nguyên tố > 3 => 2p + 1 không chia hết cho 3 => 2.(2p + 1) hay 4p + 2 không chia hết cho 3
=> 4p + 1 chia hết cho 3
Mà 1 < 3 < 4p + 1 => 4p + 1 là hợp số
Xét 3 STN liên tiếp 4p + 1,4p + 2, trong 3 số này có 1 số : 3
Do p nguyên tố > 3 => 2p + 1 ko : hết cho 3 => 2.( 2p + 1 hay 4p + 2 ko : hết cho 3
=> 4p + 1 : 3
Mà 1 < 3 < 4p + 1 => 4p + 1 là hợp số !
Chứng tỏ rằng nếu p là số nguyên lớn hơn 3 và 2p+1 cũng là số nguyên tố thì 4p+1 là hợp số
a, p là số nguyên tố lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2
xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI
xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)
vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số
do đó 4p + 1 là hợp số ( đpcm)
nhớ tk chúc bạn học tốt ^.^
nhớ tk chúc bạn học tốt ^.^
nhớ tk chúc bạn học tốt ^.^
a,chứng tỏ rằng với mọi số tự nhiên n thì số 9^2n - 1 chia hết cho 2 và 5
b, chứng tỏ rằng p là số nguyên tố lớn hơn 3 và 2p+1 cũng là số nguyên tố thì 4p+1 là hợp số