A=\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9702}+\dfrac{1}{9900}\)
HELP ME
a=(\(\dfrac{1}{2}+\dfrac{1}{12}+\dfrac{1}{30}+...+\dfrac{1}{9900}\)):(\(\dfrac{-6}{51}-\dfrac{6}{52}-\dfrac{6}{53}-...-\dfrac{6}{100}\))
giúp mik giải nhé
cảm ơn !
A=\(\dfrac{1}{2}\)+\(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+....+\dfrac{1}{9900}\)
B=\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+....+\dfrac{1}{2009.2011}\)
\(A=\dfrac{1}{2}+\dfrac{3-2}{3.2}+\dfrac{4-3}{3.4}+...+\dfrac{100-99}{100.99}\)
\(A=\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=1-\dfrac{1}{100}\)
\(A=\dfrac{99}{100}\)
\(2B=\dfrac{2}{1.3}+\dfrac{2}{3.5}+....+\dfrac{2}{2007.2009}+\dfrac{2}{2009..2011}\)
\(2B=\dfrac{3-1}{1.3}+\dfrac{5-3}{3,5}+...+\dfrac{2009-2007}{2009.2007}+\dfrac{2011-2009}{2011.2009}\)
\(2B=\dfrac{3}{3}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2007}-\dfrac{1}{2009}+\dfrac{1}{2009}-\dfrac{1}{2011}\)
\(2B=1-\dfrac{1}{2011}\)
\(2B=\dfrac{2010}{2011}\)
\(B=\dfrac{2010}{4022}\)
Tính nhanh:
\(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{9702}\)
=1 phần 3*4+1 phần 4*5+1 phần 5*6+...+1 phần 98*99
=1 phần 3-1 phần 4+ 1 phần 4- 1 phần 5+...+1 phần 98-1 phần 99
=1 phần 3- 1 phần 99 =32 phần 99
\(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{9702}=\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{98\cdot99}=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{98}-\dfrac{1}{99}=\dfrac{1}{3}-\dfrac{1}{99}=\dfrac{33-1}{99}=\dfrac{32}{99}\)
\(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{9702}\)
= \(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{98.99}\)
= \(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{98}-\dfrac{1}{99}\)
= \(\dfrac{1}{3}-\dfrac{1}{99}\)
= \(\dfrac{33}{99}-\dfrac{1}{99}\)
= \(\dfrac{32}{99}\)
Hãy so sánh : \(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+...+\dfrac{1}{9900}\)với \(\dfrac{1}{2}\)
\(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{9900}\)
\(=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\dfrac{1}{2}-\dfrac{1}{100}< \dfrac{1}{2}\)
Vậy...
\(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{9900}\)
\(=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\dfrac{1}{2}-\dfrac{1}{100}< \dfrac{1}{2}\left(đpcm\right)\)
Vậy...
\(\dfrac{2}{1²}\) . \(\dfrac{6}{2²}\) . \(\dfrac{12}{3³}\) . \(\dfrac{20}{4²}\) +....+ \(\dfrac{110}{10²}\) . x = -20
Help me
Sửa đề
\(\dfrac{2}{1^2}\cdot\dfrac{6}{2^2}\cdot\dfrac{12}{3^3}\cdot.......\cdot\dfrac{110}{10^2}\cdot x=-20\)
\(\dfrac{2}{1\cdot1}\cdot\dfrac{2\cdot3}{2\cdot2}\cdot\cdot\cdot\cdot\dfrac{11\cdot10}{10\cdot10}\cdot x=-20\)
\(\dfrac{\left(2\cdot3\cdot4\cdot....\cdot11\right)}{\left(1\cdot2\cdot3\cdot4\cdot...\cdot10\right)}\cdot\dfrac{\left(1\cdot2\cdot3\cdot4\cdot5\cdot...\cdot10\right)}{\left(1\cdot2\cdot3\cdot4\cdot...\cdot10\right)}\cdot x=-20\)
\(11\cdot x=-20\\ x=-\dfrac{20}{11}\)
Tính nhanh:
a) A= 1 + \(\dfrac{1}{5}+\dfrac{1}{25}+\dfrac{1}{125}+\dfrac{1}{625}+...+\dfrac{1}{78125}\)
b) B= \(\dfrac{1}{3}+\dfrac{1}{12}+\dfrac{1}{48}+\dfrac{1}{192}+\dfrac{1}{768}+...+\dfrac{1}{36864}\)
c) M= \(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{9900}\)
d) P= \(\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+...+\dfrac{1}{1+2+3+4+...+2018}\)
A=\(\dfrac{38}{50}\)+\(\dfrac{9}{20}\)-\(\dfrac{11}{30}\)+\(\dfrac{13}{42}\)-\(\dfrac{15}{56}\)+\(\dfrac{17}{72}\)-...+\(\dfrac{197}{9702}\)-\(\dfrac{199}{9900}\)
Giups mình với >< mk đang cần gấp, c.ơn
Viết tập hợp sau dưới dạng tính chất đặc trưng của phương trình
A= \(\left\{\dfrac{1}{2};\dfrac{1}{6};\dfrac{1}{12};\dfrac{1}{20};......;\dfrac{1}{9900}\right\}\)
Ta có các hạng tử là:
\(\dfrac{1}{2}=\dfrac{1}{1\cdot2};\dfrac{1}{6}=\dfrac{1}{2\cdot3};\dfrac{1}{12}=\dfrac{1}{3\cdot4};\dfrac{1}{20}=\dfrac{1}{4\cdot5};...;\dfrac{1}{9900}=\dfrac{1}{99\cdot100}\)
Ta thấy tất cả đề là: \(\dfrac{1}{x\left(x+1\right)}\)
Tính chất đặc trưng của tập hợp là:
\(A=\left\{\dfrac{1}{x\left(x+1\right)}|x\in N,1\le x\le99\right\}\)
A={1/x(x+1)|x thuộc N, 1<=x<=99}
1 + \(\dfrac{1}{3}\) +\(\dfrac{1}{6}\)+\(\dfrac{1}{10}\) +......+
\(\dfrac{2}{x(x+1)}\) =1\(\dfrac{1989}{1991}\)
\(\dfrac{help}{me}\)
\(1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x\left(x+1\right)}=1\dfrac{1989}{1991}\)
\(\Rightarrow2\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{3980}{1991}\)
\(\Rightarrow2\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{3980}{1991}\)
\(\Rightarrow2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{3980}{1991}\)
\(\Rightarrow2\left(1-\dfrac{1}{x+1}\right)=\dfrac{3980}{1991}\)
\(\Rightarrow1-\dfrac{1}{x+1}=\dfrac{3980}{1991}.\dfrac{1}{2}\)
\(\Rightarrow1-\dfrac{1}{x+1}=\dfrac{1990}{1991}\)
\(\Rightarrow\dfrac{1}{x+1}=1-\dfrac{1990}{1991}\)
\(\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{1991}\)
\(\Rightarrow x+1=1991\)
\(\Rightarrow x=1990\)