=1 phần 3*4+1 phần 4*5+1 phần 5*6+...+1 phần 98*99
=1 phần 3-1 phần 4+ 1 phần 4- 1 phần 5+...+1 phần 98-1 phần 99
=1 phần 3- 1 phần 99 =32 phần 99
\(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{9702}=\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{98\cdot99}=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{98}-\dfrac{1}{99}=\dfrac{1}{3}-\dfrac{1}{99}=\dfrac{33-1}{99}=\dfrac{32}{99}\)
\(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{9702}\)
= \(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{98.99}\)
= \(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{98}-\dfrac{1}{99}\)
= \(\dfrac{1}{3}-\dfrac{1}{99}\)
= \(\dfrac{33}{99}-\dfrac{1}{99}\)
= \(\dfrac{32}{99}\)