Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
16 tháng 9 2023 lúc 22:06

\(\begin{array}{l}a)\frac{x}{{ - 3}} = \frac{7}{{0,75}}\\ \Rightarrow x.0,75 = ( - 3).7\\ \Rightarrow x = \frac{{( - 3).7}}{{0,75}} =  - 28\end{array}\)

Vậy x = 28

\(\begin{array}{l}b) - 0,52:x = \sqrt {1,96} :( - 1,5)\\ - 0,52:x = 1,4:( - 1,5)\\ x = \dfrac{(-0,52).(-1,5)}{1,4}\\x = \frac{39}{{70}}\end{array}\)

Vậy x = \(\frac{39}{{70}}\)

\(\begin{array}{l}c)x:\sqrt 5  = \sqrt 5 :x\\ \Leftrightarrow \frac{x}{{\sqrt 5 }} = \frac{{\sqrt 5 }}{x}\\ \Rightarrow x.x = \sqrt 5 .\sqrt 5 \\ \Leftrightarrow {x^2} = 5\\ \Leftrightarrow \left[ {_{x =  - \sqrt 5 }^{x = \sqrt 5 }} \right.\end{array}\)

Vậy x \( \in \{ \sqrt 5 ; - \sqrt 5 \} \)

Chú ý:

Nếu \({x^2} = a(a > 0)\) thì x = \(\sqrt a \) hoặc x = -\(\sqrt a \)

Nguyễn Lê Phước Thịnh
16 tháng 9 2023 lúc 22:07

a: \(\dfrac{x}{-3}=\dfrac{7}{0.75}=\dfrac{28}{3}\)

=>\(x=\dfrac{28\left(-3\right)}{3}=-28\)

b: \(-\dfrac{0.52}{x}=\dfrac{\sqrt{1.96}}{-1.5}=\dfrac{1.4}{-1.5}\)

=>\(x=0.52\cdot\dfrac{1.5}{1.4}=\dfrac{39}{70}\)

c: \(\dfrac{x}{\sqrt{5}}=\dfrac{\sqrt{5}}{x}\)

=>\(x^2=5\)

=>\(x=\pm\sqrt{5}\)

Mai Anh
Xem chi tiết
Nhã Doanh
24 tháng 7 2018 lúc 19:33

\(a.\sqrt[3]{2x-1}=3\)

\(\Leftrightarrow2x-1=27\)

\(\Leftrightarrow x=14\)

\(b.\sqrt[3]{x-5}=0,9\)

\(\Leftrightarrow x-5=0,729\)

\(\Leftrightarrow x=5,729\)

\(c.\sqrt[3]{x^2-2x+28}=3\)

\(\Leftrightarrow x^2-2x+28=27\)

\(\Leftrightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x=1\)

Nguyễn Thị Ngọc Thơ
24 tháng 7 2018 lúc 21:29

d, Ta có: \(\left(2\sqrt[3]{x^2}-3\sqrt[3]{x}\right)^3=5^3\)

\(\Leftrightarrow8x^2-27x-3.2.3\sqrt[3]{x^2.x}.\left(2\sqrt[3]{x^2}-3\sqrt[3]{x}\right)=125\)

Vì \(2\sqrt[3]{x^2}-3\sqrt[3]{x}=5\)

\(\Rightarrow8x^2-27x-18.x.5=125\)

\(\Leftrightarrow8x^2-117x-125=0\)

\(\Leftrightarrow8x^2+8x-125x-125=0\)

\(\Leftrightarrow\left(x+1\right)\left(8x-125\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{125}{8}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=-1\\x=\dfrac{125}{8}\end{matrix}\right.\)

Nhã Doanh
24 tháng 7 2018 lúc 19:33

\(a.\sqrt[3]{2x-1}=3\)

\(\Leftrightarrow2x-1=27\)

\(\Leftrightarrow x=14\)

\(b.\sqrt[3]{x-5}=0,9\)

\(\Leftrightarrow x-5=0,729\)

\(\Leftrightarrow x=5,729\)

\(c.\sqrt[3]{x^2-2x+28}=3\)

\(\Leftrightarrow x^2-2x+28=27\)

\(\Leftrightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x=1\)

cherrylovejk_2407
Xem chi tiết
Trên con đường thành côn...
26 tháng 8 2021 lúc 14:56

undefined

Nguyễn Lê Phước Thịnh
26 tháng 8 2021 lúc 14:57

b: Thay \(x=7-2\sqrt{6}\) vào A, ta được:

\(A=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-7+2\sqrt{6}-5\left(\sqrt{6}+1\right)-1}\)

\(=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-8+2\sqrt{6}-5\sqrt{6}-5}\)

\(=\dfrac{-3\sqrt{6}+3}{13+3\sqrt{6}}=\dfrac{93-48\sqrt{6}}{115}\)

Nguyễn Nho Bảo Trí
Xem chi tiết
Nguyễn Nho Bảo Trí
4 tháng 8 2021 lúc 21:33

Giúp mình với 

Nguyễn Việt Lâm
4 tháng 8 2021 lúc 21:40

Nếu chưa quen giải toán căn thức, em tìm ĐKXĐ cho x, rồi đặt \(\sqrt{x}=t\ge0\Rightarrow x=t^2\) rồi thế vào giải là nó ra 1 pt bình thường theo biến t thôi

Nguyễn Lê Phước Thịnh
4 tháng 8 2021 lúc 21:44

a) Ta có: \(\sqrt{9x}+\sqrt{x}=12\)

\(\Leftrightarrow4\sqrt{x}=12\)

\(\Leftrightarrow\sqrt{x}=3\)

hay x=9

b) Ta có: \(\dfrac{\sqrt{x}+3}{4}=\dfrac{\sqrt{x}}{3}\)

\(\Leftrightarrow4\sqrt{x}=3\sqrt{x}+9\)

\(\Leftrightarrow\sqrt{x}=9\)

hay x=81

c) Ta có: \(\dfrac{5\sqrt{x}-x}{\sqrt{x}}=2\)

\(\Leftrightarrow5\sqrt{x}-x=2\sqrt{x}\)

\(\Leftrightarrow x-5\sqrt{x}+2\sqrt{x}=0\)

\(\Leftrightarrow x-3\sqrt{x}=0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-3\right)=0\)

hay x=9

Duong Tue Tam
Xem chi tiết
Dang Tung
16 tháng 6 2023 lúc 8:47

\(\left(a\right):2x-7\sqrt{x}+3=0\left(x\ge0\right)\\ < =>\left(2x-6\sqrt{x}\right)-\left(\sqrt{x}-3\right)=0\\ < =>2\sqrt{x}\left(\sqrt{x}-3\right)-\left(\sqrt{x}-3\right)=0\\ < =>\left(2\sqrt{x}-1\right)\left(\sqrt{x}-3\right)=0\\ =>\left[{}\begin{matrix}2\sqrt{x}-1=0\\\sqrt{x}-3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{1}{4}\left(TM\right)\\x=9\left(TM\right)\end{matrix}\right.\)

\(\left(b\right):3\sqrt{x}+5< 6\\ < =>3\sqrt{x}< 1\\ < =>\sqrt{x}< \dfrac{1}{3}\\ < =>0\le x< \dfrac{1}{9}\)

\(\left(c\right):x-3\sqrt{x}-10< 0\\ < =>\left(x-5\sqrt{x}\right)+\left(2\sqrt{x}-10\right)< 0\\ < =>\sqrt{x}\left(\sqrt{x}-5\right)+2\left(\sqrt{x}-5\right)< 0\\ < =>\left(\sqrt{x}-5\right)\left(\sqrt{x}+2\right)< 0\\ =>\left\{{}\begin{matrix}\sqrt{x}-5< 0\\\sqrt{x}+2>0\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}0\le x< 25\\x\ge0\end{matrix}\right.< =>0\le x< 25\)

\(\left(d\right):x-5\sqrt{x}+6=0\left(x\ge0\right)\\ < =>\left(x-2\sqrt{x}\right)-\left(3\sqrt{x}-6\right)=0\\ < =>\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=0\\ < =>\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)=0\\ =>\left[{}\begin{matrix}\sqrt{x}-3=0\\\sqrt{x}-2=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=9\\x=4\end{matrix}\right.\left(TM\right)\)

\(\left(e\right):x+5\sqrt{x}-14< 0\\ < =>\left(x+7\sqrt{x}\right)-\left(2\sqrt{x}+14\right)< 0\\ < =>\sqrt{x}\left(\sqrt{x}+7\right)-2\left(\sqrt{x}+7\right)< 0\\ < =>\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)< 0\\ =>\left\{{}\begin{matrix}\sqrt{x}+7>0\\\sqrt{x}-2< 0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x\ge0\\0\le x< 4\end{matrix}\right.< =>0\le x< 4\)

Nguyễn Duy Khang
Xem chi tiết
Phùng Công Anh
25 tháng 6 2023 lúc 21:18

ĐKXĐ: `x>=0`

`a,sqrtx=21`

`=>x=21(TMĐK)`

KL...

`b,3\sqrtx=18`

`<=>sqrtx=6`

`=>x=36(TMĐK)`

KL...

`c,sqrtx <=5`

`=>x<=25` kết hợp với điều kiện có `0<=x<=25`

KL....

`d,3sqrt(2x)>9`

`<=>sqrt(2x)>3`

`=>2x>9`

`<=>x>9/2(TMĐK)`

KL...

Minh Phương
25 tháng 6 2023 lúc 21:32

a. \(\sqrt{x}=21\)

Vì x\(\ge\) 0 nên bình phương 2 vế ta được:

x = 212 \(\Leftrightarrow\) x = 441

Vậy x = 441

\(3\sqrt{x}=18\) \(\Leftrightarrow\sqrt{x}=18:3\Leftrightarrow x=\sqrt{6}\) 

Vì \(x\ge0\) nên bình phương ta được:

x = 62 \(\Leftrightarrow\) x = 36

Vậy x = 36

Minh Phương
25 tháng 6 2023 lúc 21:50

c. \(\sqrt{x}hoặc=\sqrt{5}\) 

\(\sqrt{x}\le\sqrt{5}\) (đk x \(\le\) 0)

\(\Rightarrow x\le5\) 

Kết hợp với đk \(\Rightarrow0\le x\le5\)  

d. \(3\sqrt{2x}>9\) 

\(\Rightarrow\sqrt{2}>3\) 

\(\Rightarrow2x>9\) 

\(\Rightarrow x>\dfrac{9}{2}\) 

Kết hợp với điều kiện \(\Rightarrow x>\dfrac{9}{2}\) 

Chau Pham
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 11 2021 lúc 7:07

\(a,\Leftrightarrow x-1=4\Leftrightarrow x=5\\ b,\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\3x+1=4x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\x=4\left(tm\right)\end{matrix}\right.\Leftrightarrow x=4\\ c,ĐK:x\ge-5\\ PT\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\\ \Leftrightarrow3\sqrt{x+5}=6\\ \Leftrightarrow\sqrt{x+5}=3\\ \Leftrightarrow x+5=9\\ \Leftrightarrow x=4\left(tm\right)\)

\(d,\Leftrightarrow\sqrt{\left(x-2\right)^2}=\sqrt{\left(\sqrt{5}+1\right)^2}\\ \Leftrightarrow\left|x-2\right|=\sqrt{5}+1\\ \Leftrightarrow\left[{}\begin{matrix}x-2=\sqrt{5}+1\\2-x=\sqrt{5}+1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{5}+3\\x=1-\sqrt{5}\end{matrix}\right.\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
16 tháng 9 2023 lúc 22:06

\(\begin{array}{l}a)\sqrt x  - 16 = 0\\\sqrt x  = 16\\x = {16^2}\\x = 256\end{array}\)

Vậy x = 256

\(\begin{array}{l}b)2\sqrt x  = 1,5\\\sqrt x  = 1,5:2\\\sqrt x  = 0.75\\x = {(0,75)^2}\\x = 0,5625\end{array}\)

Vậy x = 0,5625

\(\begin{array}{l}c)\sqrt {x + 4}  - 0,6 = 2,4\\\sqrt {x + 4}  = 2,4 + 0,6\\\sqrt {x + 4}  = 3\\x + 4 = 9\\x = 5\end{array}\)

Vậy x = 5

Linh Nguyễn Diệu
Xem chi tiết
Nguyễn Hoàng Minh
31 tháng 10 2021 lúc 8:50

\(1,\\ a,ĐK:\left\{{}\begin{matrix}x\ge0\\x+5\ge0\end{matrix}\right.\Leftrightarrow x\ge0\\ b,Sửa:B=\left(\sqrt{3}-1\right)^2+\dfrac{24-2\sqrt{3}}{\sqrt{2}-1}\\ B=4-2\sqrt{3}+\dfrac{2\sqrt{3}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\\ B=4-2\sqrt{3}+2\sqrt{3}=4\\ 3,\\ =\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{1+\sqrt{x}}\right]\cdot\dfrac{\sqrt{x}-3+2-2\sqrt{x}}{\left(1-\sqrt{x}\right)\left(\sqrt{x}-3\right)}-2\\ =\left(1-\sqrt{x}\right)\cdot\dfrac{-\sqrt{x}-1}{\left(1-\sqrt{x}\right)\left(\sqrt{x}-3\right)}-2\\ =\dfrac{-\sqrt{x}-1}{\sqrt{x}-3}-2=\dfrac{-\sqrt{x}-1-2\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{-3\sqrt{x}+5}{\sqrt{x}-3}\)