Nếu chưa quen giải toán căn thức, em tìm ĐKXĐ cho x, rồi đặt \(\sqrt{x}=t\ge0\Rightarrow x=t^2\) rồi thế vào giải là nó ra 1 pt bình thường theo biến t thôi
a) Ta có: \(\sqrt{9x}+\sqrt{x}=12\)
\(\Leftrightarrow4\sqrt{x}=12\)
\(\Leftrightarrow\sqrt{x}=3\)
hay x=9
b) Ta có: \(\dfrac{\sqrt{x}+3}{4}=\dfrac{\sqrt{x}}{3}\)
\(\Leftrightarrow4\sqrt{x}=3\sqrt{x}+9\)
\(\Leftrightarrow\sqrt{x}=9\)
hay x=81
c) Ta có: \(\dfrac{5\sqrt{x}-x}{\sqrt{x}}=2\)
\(\Leftrightarrow5\sqrt{x}-x=2\sqrt{x}\)
\(\Leftrightarrow x-5\sqrt{x}+2\sqrt{x}=0\)
\(\Leftrightarrow x-3\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-3\right)=0\)
hay x=9